K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2017

a) \(\sqrt{9-12x+4x^2}=4+x\Leftrightarrow\sqrt{\left(3-2x\right)^2}=4+x\)

\(\Leftrightarrow\left|3-2x\right|=4+x\)

th1: \(3-2x\ge0\Leftrightarrow2x\le3\Leftrightarrow\Leftrightarrow x\le\dfrac{3}{2}\)

\(\Rightarrow\left|3-2x\right|=4+x\Leftrightarrow3-2x=4+x\Leftrightarrow3x=-1\Leftrightarrow x=\dfrac{-1}{3}\left(tmđk\right)\)

th2: \(3-2x< 0\Leftrightarrow2x>3\Leftrightarrow x>\dfrac{3}{2}\)

\(\Rightarrow\left|3-2x\right|=4+x\Leftrightarrow2x-3=4+x\Leftrightarrow x=7\left(tmđk\right)\)

vậy \(x=\dfrac{-1}{3};x=7\)

b) \(\sqrt{4-4x+x^2}=\left(x-1\right)^2+x-6\)

\(\Leftrightarrow\sqrt{\left(2-x\right)^2}=x^2-2x+1+x-6\)

\(\Leftrightarrow\left|2-x\right|=x^2-x-5\)

th1: \(2-x\ge0\Leftrightarrow x\le2\)

\(\Rightarrow\left|2-x\right|=x^2-x-5\Leftrightarrow2-x=x^2-x-5\)

\(\Leftrightarrow x^2=7\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{7}\left(loại\right)\\x=-\sqrt{7}\left(tmđk\right)\end{matrix}\right.\)

th2: \(2-x< 0\Leftrightarrow x>2\)

\(\Rightarrow\left|2-x\right|=x^2-x-5\Leftrightarrow x-2=x^2-x-5\)

\(\Leftrightarrow x^2-2x-3=0\Leftrightarrow x^2+x-3x-3=0\)

\(\Leftrightarrow x\left(x+1\right)-3\left(x+1\right)=0\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\left(tmđk\right)\\x=-1\left(loại\right)\end{matrix}\right.\)

vậy \(x=-\sqrt{7};x=3\)

24 tháng 7 2017

a) \(\sqrt{9-12x+4x^2}=4+x\)

\(\Leftrightarrow\sqrt{\left(3-2x\right)^2}=4+x\)

\(\Leftrightarrow\left|3-2x\right|=4+x\)

\(\Leftrightarrow\left[{}\begin{matrix}3-2x=4+x\\3-2x=-4-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-1\\x=7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=7\end{matrix}\right.\)

Vậy \(x_1=-\dfrac{1}{3};x_2=7\).

b) \(\sqrt{4-4x+x^2}=\left(x-1\right)^2+x-6\)

\(\Leftrightarrow\sqrt{\left(2-x\right)^2}=x^2-2x+1+x-6\)

\(\Leftrightarrow\left|2-x\right|=x^2-x-5\)

\(\Leftrightarrow\left[{}\begin{matrix}2-x=x^2-x-5\\2-x=-x^2+x+5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=7\\x^2=2x+3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{7}\left(l\right)\\x=-\sqrt{7}\\x=3\\x=-1\left(l\right)\end{matrix}\right.\)

Vậy \(x_1=-\sqrt{7};x_2=3\).

24 tháng 7 2017

a,  \(\Leftrightarrow\sqrt{\left(3-2x\right)^2=4+x}\)

\(\Leftrightarrow\left|3-2x\right|=4+x\)

\(\Leftrightarrow\orbr{\begin{cases}3-2x=4+x\\3-2x=-4-x\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}3x=-1\\x=7\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{3}\\x=7\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\orbr{\begin{cases}x=\sqrt{7}\\x=-\sqrt{7}\end{cases}}\\\left(x-3\right)\left(x-1\right)=0\end{cases}}\)

3 tháng 9 2020

:V

Câu đầu cho x > 0 thì dễ hơn ...... 

Sử dụng BĐT AM - GM ta dễ có:\(D=\sqrt{x}+\frac{9}{\sqrt{x}+2}=\sqrt{x}+2+\frac{9}{\sqrt{x}+2}-2\ge2\sqrt{\left(\sqrt{x}+2\right)\cdot\frac{9}{\sqrt{x}+2}}-2=4\)

Đẳng thức xảy ra tại x=1

\(E=\frac{x+1}{\sqrt{x}}\ge\frac{2\sqrt{x}}{\sqrt{x}}=2\) Đẳng thức xảy ra tại x=1

Làm 2 cái thôi còn lại tương tự bạn nhé :) 

3 tháng 9 2020

+ Ta có: \(D=\sqrt{x}+\frac{9}{\sqrt{x}+2}\)

       \(D=\sqrt{x}+2+\frac{9}{\sqrt{x}+2}-2\)

   Áp dụng bất đẳng thức Cô-si cho phương trình \(\sqrt{x}+2+\frac{9}{\sqrt{x}+2}\) ta có: 

         \(\sqrt{x}+2+\frac{9}{\sqrt{x}+2}\ge\sqrt{\left(\sqrt{x}+2\right).\left(\frac{9}{\sqrt{x}+2}\right)}=\sqrt{9}=3\)

         \(\Rightarrow\)\(D\ge3-2=1\)

   Dấu bằng xảy ra khi và chỉ khi: \(\sqrt{x+2}=\frac{9}{\sqrt{x}+2}\)

                                               \(\Leftrightarrow\left(\sqrt{x}+2\right)^2=9\)

                                               \(\Leftrightarrow\sqrt{x}+2=\pm3\)

                                               \(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}+2=-3\\\sqrt{x}+2=3\end{cases}}\)

                                               \(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=-5\left(L\right)\\\sqrt{x}=1\end{cases}}\)

                                               \(\Leftrightarrow x=\pm1\)

 Vậy \(S=\left\{\pm1\right\}\)

31 tháng 12 2015

\(\Leftrightarrow\left(1+x\sqrt{x^2+1}\right)\left(\sqrt{x^2+1}-x\right)=\left(\sqrt{x^2+1}-x\right)\left(\sqrt{x^2+1}+x\right)\)
\(\Leftrightarrow\left(\sqrt{x^2+1}-x\right)\left(1+x\sqrt{x^2+1}-\sqrt{x^2+1}-x\right)=0\)
\(\Leftrightarrow\left(\sqrt{x^2+1}-x\right)\left(\sqrt{x^2+1}-1\right)\left(x-1\right)=0\)
Tự giải tiếp nhé

31 tháng 12 2015

đây chỉ là toán lớp 1 thui