Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 3:
2: Xét tứ giác OKEH có
\(\widehat{OKE}=\widehat{OHE}=\widehat{KOH}=90^0\)
Do đó: OKEH là hình chữ nhật
mà đường chéo OE là tia phân giác của \(\widehat{KOH}\)
nên OKEH là hình vuông
\(=\dfrac{\sqrt{a}+2+\sqrt{a}-2}{a-4}:\dfrac{\sqrt{a}+2-2}{\sqrt{a}+2}\)
\(=\dfrac{2\sqrt{a}}{a-4}\cdot\dfrac{\sqrt{a}+2}{\sqrt{a}}=\dfrac{2}{\sqrt{a}-2}\)
`2)x^4+2x^3-x^2-2x+1=0`
`<=>x^4+2x^3+x^2-2x^2-2x+1=0`
`<=>(x^2+x)^2-2(x^2+x)+1=0`
`<=>(x^2+x-1)^2=0`
`<=>x^2+x-1=0`
`\Delta=1+4=5`
`=>x_{1,2}=(-1+-sqrt5)/2`
Vậy `S={(-1+sqrt5)/2,(-1+sqrt5)/2`
`3)x^4-4x^3-9x^2+8x+4=0`
`<=>x^4-x^3-3x^3+3x^2-12x^2+12x-4x+4=0`
`<=>(x-1)(x^3-3x^2-12x-4)=0`
`<=>(x-1)(x^3+2x^2-5x^2-10x-2x-4)=0`
`<=>(x-1)(x+2)(x^2-5x-10)=0`
`+)x=1`
`+)x=-2`
`+)x^2-5x-10=0`
`Delta=25+40=65`
`=>x_{12}=(5+sqrt{65})/2`
Bạn nên chịu khó gõ đề ra khả năng được giúp sẽ cao hơn.
Câu h của em đây nhé
h, ( 1 + \(\dfrac{3-\sqrt{3}}{\sqrt{3}-1}\)).(1 - \(\dfrac{3+\sqrt{3}}{\sqrt{3}+1}\))
= \(\dfrac{\sqrt{3}-1+3-\sqrt{3}}{\sqrt{3}-1}\).\(\dfrac{\sqrt{3}+1-3-\sqrt{3}}{\sqrt{3}+1}\)
= \(\dfrac{2}{\sqrt{3}-1}\).\(\dfrac{-2}{\sqrt{3}+1}\)
= \(\dfrac{-4}{2}\)
= -2
∆'= b'²-ac= m²-1(m²-1)=m²-m²+1=1>0
Vì ∆' >0 nên pt có 2 nghiệm phân biệt:
X1= (-b'+✓∆')/a= -m+1
X2= (-b' - √∆')/a= -m-1
Δ=(1+\(\sqrt{2}\) )2-4(-1-\(\sqrt{2}\)).2=1+2+2\(\sqrt{2}\) +8+8\(\sqrt{2}\) =11 +10\(\sqrt{2}\)
⇒\(\sqrt{\Delta}\)=\(\sqrt{11+10\sqrt{2}}\)
do △>0 nên pt có hai nghiệm phân biệt
x=\(\frac{1+\sqrt{2}+\sqrt{11+10\sqrt{2}}}{4}\)
x=\(\frac{1+\sqrt{2}-\sqrt{11+\sqrt{10}}}{4}\)
có \(\Delta=\left[-\left(1+\sqrt{2}\right)\right]^2-4.2.\left(-1-\sqrt{2}\right)=3+2\sqrt{2}+8+8\sqrt{2}=11+10\sqrt{2}\) vì \(\Delta>0\) nên phương trình có 2 nghiệm phân biệt
x1=\(\frac{1+\sqrt{2}+\sqrt{11+10\sqrt{2}}}{4}\)
x2=\(\frac{1+\sqrt{2}-\sqrt{11+10\sqrt{2}}}{4}\)