Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x4-x3-2x2-x+2=0
\(\Leftrightarrow\)2x4-2x3+x3-x2-x2+x-2x+2 =0
\(\Leftrightarrow\)2x3(x-1)+x2(x-1)-x(x-1)+2(x-1)=0
\(\Leftrightarrow\)(x-1)(2x3+x2-x+2)=0
\(\Leftrightarrow\)(x-1)(x-1)(2x2+3x+2)=0
\(\Leftrightarrow\)(x-1)2(2x2+3x+2)=0
\(\Leftrightarrow\) x-1=0 (do 2x2+3x+2 >0)
\(\Leftrightarrow\)x=1
Đặ x^2 = t ( t > 0 )
pt <=> t^2 + 3t - 4 = 0
=> t^2 + 4t - t - 4 = 0
=> t ( t + 4 ) - ( t + 4 ) = 0
=> ( t - 1 )( t + 4 ) = 0
=> t = 1 ; t = -4 ( loại )
Với t = 1 => x^2 = 1 => x = 1 hoặc x = -1
=x4-x2+4x2-4
=x2(x2-1)+4(x2-1)
=(x2-1)(x2+4)
=(x-1)(x+1)(x2+4)
***
Đúng cho mk nha
Đặt \(x^2=t\left(t\ge0\right)\)
Phương trình trở thành:
\(-t^2+5t+36=0\Rightarrow\left[{}\begin{matrix}t=-4\left(ktm\right)\\t=9\left(tm\right)\end{matrix}\right.\)
Với \(t=9\Rightarrow x^2=9\Rightarrow x=\pm3\)
Vậy \(T=\left\{\pm3\right\}\)
\(x^3-3x^2-3x-4=0\)
\(\Leftrightarrow x^3-3x^2-4x+x-4=0\)
\(\Leftrightarrow x\left(x^2-3x-4\right)+x-4=0\)
\(\Leftrightarrow x\left(x+1\right)\left(x-4\right)+x-4=0\)
\(\Leftrightarrow\left(x-4\right)\left(x^2+x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x^2+x+1=0\left(vn\right)\end{matrix}\right.\) \(\Rightarrow x=4\)