Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình hướng dẫn nhé :)
- Phương trình \(\sqrt{x-2\sqrt{x}+1}=\sqrt{x}-1\Leftrightarrow\sqrt{\left(\sqrt{x}-1\right)^2}=\sqrt{x}-1\Leftrightarrow\left|\sqrt{x}-1\right|=\sqrt{x}-1\)
Xét trường hợp để tìm nghiệm nhé :)
- \(\sqrt{4x^2-4x+1}=1-2x\Leftrightarrow\sqrt{\left(2x-1\right)^2}=1-2x\Leftrightarrow\left|2x-1\right|=1-2x\)
- \(\sqrt{x+2\sqrt{x-1}}=3\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}=3\Leftrightarrow\left|\sqrt{x-1}+1\right|=3\) (mình sửa lại đề)
- \(\sqrt{x^2-4}=\sqrt{x^2-2x}\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}=\sqrt{x\left(x-2\right)}\Leftrightarrow\sqrt{x-2}\left(\sqrt{x+2}-\sqrt{x}\right)=0\)
- \(\sqrt{x^2+5}=x+1\). Tìm điều kiện xác định rồi bình phương hai vế.
a) Ta có pt \(\Leftrightarrow\sqrt{\left(x-3\right)^2}=\sqrt{\left(\sqrt{3}+1\right)^2}\Leftrightarrow\left|x-3\right|=\sqrt{3}+1...\)
b) Ta có pt \(\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x+2\right)^2}=1\Leftrightarrow\left|x-1\right|+\left|x+2\right|=1\)
đến đây tự phá dấu trị tuyệt đối !
^_^
a, \(\left(\sqrt{x-1}-2\right)^2+\)\(\left(\sqrt{x-1}-3\right)^2\)
xog xét 2 TH
b, bình phương
2
GTLN : 2 dấu = xra \(2\le x\le4\)
\(\sqrt{x^2+3x+3}=1\)
\(\Leftrightarrow x^2+3x+3=1\)
\(\Leftrightarrow x^2+3x+2=0\)
\(\Leftrightarrow x^2+x+2x+2=0\)
\(\Leftrightarrow x\left(x+1\right)+2\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\x+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-2\\x=-1\end{cases}}\)
\(2\sqrt{x+2+2\sqrt{x+1}}-\sqrt{x+1}=4\)
\(\Leftrightarrow2\sqrt{x+1+2\sqrt{x+1}+1}-\sqrt{x+1}=4\)
\(\Leftrightarrow2\sqrt{\left(\sqrt{x+1}+1\right)^2}-\sqrt{x+1}=4\)
\(\Leftrightarrow2\left(\sqrt{x+1}+1\right)-\sqrt{x+1}=4\)
\(\Leftrightarrow2\sqrt{x+1}+2-\sqrt{x+1}=4\)
\(\Leftrightarrow\sqrt{x+1}=2\)
\(\Leftrightarrow x+1=4\)
\(\Leftrightarrow x=3\)
Sửa đề: \(\sqrt{x-1}+\sqrt{x^3+x^2+x+1}=1+\sqrt{x^4-1}\)
Đặt \(\hept{\begin{cases}\sqrt{x-1}=a\left(a\ge0\right)\\\sqrt{x^3+x^2+x+1}=b\left(b\ge0\right)\end{cases}}\)
\(\Leftrightarrow a+b=1+ab\)
\(\Leftrightarrow\left(a-1\right)+\left(b-ab\right)=0\)
\(\Leftrightarrow\left(a-1\right)\left(1-b\right)=0\)
Với a = 1 thì
\(\Rightarrow\sqrt{x-1}=1\)
\(\Rightarrow x=2\)
Với b = 1 thì
\(\sqrt{x^3+x^2+x+1}=1\)
\(\Leftrightarrow x=0\)(loại)
Vậy PT có nghiệm duy nhất là x = 2
= tôi không biết