Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{3x^2+6x+12}+\sqrt{5x^2-10x^2+9}=\sqrt{3\left(x^2+2x+1\right)+9}+\sqrt{5\left(x^2-2x+1\right)+4}\)
\(\ge\sqrt{9}+\sqrt{4}=3+2=5\)
a) giải pt ra ta được : x=-1
b) giải pt ra ta được : x=2
c)giải pt ra ta được : x vô ngiệm
d)giải pt ra ta được : x=vô ngiệm
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
a/ ĐKXĐ: ...
\(\sqrt{x-7}-\frac{1}{2}+\sqrt{x-5}-\frac{3}{2}=0\)
\(\Leftrightarrow\frac{x-\frac{29}{4}}{\sqrt{x-7}+\frac{1}{2}}+\frac{x-\frac{29}{4}}{\sqrt{x-5}+\frac{3}{2}}=0\)
\(\Leftrightarrow\left(x-\frac{29}{4}\right)\left(\frac{1}{\sqrt{x-7}+\frac{1}{2}}+\frac{1}{\sqrt{x-5}+\frac{3}{2}}\right)=0\)
\(\Leftrightarrow x=\frac{29}{4}\)
b/ \(\Leftrightarrow\sqrt{x^2-6x+9}=3x+2\left(x\ge-\frac{2}{3}\right)\)
\(\Leftrightarrow x^2-6x+9=9x^2+12x+4\)
\(\Leftrightarrow8x^2-18x-5=0\Rightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=-\frac{1}{4}\end{matrix}\right.\)
c/
\(\sqrt{3\left(x+1\right)^2+9}+\sqrt{5x^2\left(x^2+2\right)+9}=5-2\left(x+1\right)^2\)
Do \(\left\{{}\begin{matrix}3\left(x+1\right)^2+9\ge9\\5x^2\left(x^2+2\right)\ge9\end{matrix}\right.\) \(\Rightarrow VT\ge\sqrt{9}+\sqrt{9}=6\)
\(VP=5-2\left(x+1\right)^2\le5< VP\)
Pt luôn vô nghiệm
<=>\(\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2+4}+2\left(x+1\right)^2=5\)
mà \(\sqrt{3\left(x+1\right)^2+9}\ge3\), \(\sqrt{5\left(x^2-1\right)^2+4}\ge4\), \(2\left(x+1\right)^2\ge0\)với mọi x
=>\(\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2+4}+2\left(x+1\right)^2\ge3+2+0=5\)
'=" xảy ra<=> x+1=0<=> x=-1
1)
ĐK: \(x\geq 5\)
PT \(\Leftrightarrow \sqrt{4(x-5)}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9(x-5)}=6\)
\(\Leftrightarrow \sqrt{4}.\sqrt{x-5}+3\sqrt{\frac{1}{9}}.\sqrt{x-5}-\frac{1}{3}.\sqrt{9}.\sqrt{x-5}=6\)
\(\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=6\)
\(\Leftrightarrow 2\sqrt{x-5}=6\Rightarrow \sqrt{x-5}=3\Rightarrow x=3^2+5=14\)
2)
ĐK: \(x\geq -1\)
\(\sqrt{x+1}+\sqrt{x+6}=5\)
\(\Leftrightarrow (\sqrt{x+1}-2)+(\sqrt{x+6}-3)=0\)
\(\Leftrightarrow \frac{x+1-2^2}{\sqrt{x+1}+2}+\frac{x+6-3^2}{\sqrt{x+6}+3}=0\)
\(\Leftrightarrow \frac{x-3}{\sqrt{x+1}+2}+\frac{x-3}{\sqrt{x+6}+3}=0\)
\(\Leftrightarrow (x-3)\left(\frac{1}{\sqrt{x+1}+2}+\frac{1}{\sqrt{x+6}+3}\right)=0\)
Vì \(\frac{1}{\sqrt{x+1}+2}+\frac{1}{\sqrt{x+6}+3}>0, \forall x\geq -1\) nên $x-3=0$
\(\Rightarrow x=3\) (thỏa mãn)
Vậy .............
Ta có:
\(\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+9}\)
\(=\sqrt{\left(3x^2+6x+3\right)+9}+\sqrt{\left(5x^4-10x^2+5\right)+4}\)
\(=\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2+4}\ge3+2=5\left(1\right)\)
Ta lại có:
\(-2x^2-4x+3=-2\left(x+1\right)^2+5\le5\left(2\right)\)
Từ (1) và (2) dấu = xảy ra khi \(x=-1\)
a) ĐK: \(x\ge5\)
\(\sqrt{4x-20}+\frac{1}{3}\sqrt{9x-45}-\frac{1}{5}\sqrt{16x-80}=0\)
\(\Leftrightarrow\)\(\sqrt{4\left(x-5\right)}+\frac{1}{3}\sqrt{9\left(x-5\right)}-\frac{1}{5}\sqrt{16\left(x-5\right)}=0\)
\(\Leftrightarrow\)\(2\sqrt{x-5}+\sqrt{x-5}-\frac{4}{5}\sqrt{x-5}=0\)
\(\Leftrightarrow\)\(\frac{11}{5}\sqrt{x-5}=0\)
\(\Leftrightarrow\)\(x-5=0\)
\(\Leftrightarrow\)\(x=5\) (t/m)
Vậy
b) \(-5x+7\sqrt{x}=-12\)
\(\Leftrightarrow\)\(5x-7\sqrt{x}-12=0\)
\(\Leftrightarrow\)\(\left(\sqrt{x}+1\right)\left(5\sqrt{x}-12\right)=0\)
đến đây tự làm
c) d) e) bạn bình phương lên
f) \(VT=\sqrt{3\left(x^2+2x+1\right)+9}+\sqrt{5\left(x^4-2x^2+1\right)+25}\)
\(=\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2}\)
\(\ge\sqrt{9}+\sqrt{25}=8\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}x+1=0\\x^2-1=0\end{cases}}\)\(\Leftrightarrow\)\(x=-1\)
Vậy...
Ta có:
\(\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+9}=\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2+4}\ge\sqrt{9}+\sqrt{4}=5\)
\(3-4x-2x^2=5-2\left(x+1\right)^2\le5\)
Đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}3\left(x+1\right)^2=0\\5\left(x^2-1\right)^2=0\\2\left(x+1\right)^2=0\end{matrix}\right.\) \(\Rightarrow x=-1\)
Vậy pt có nghiệm duy nhất \(x=-1\)