\(\frac{x-1}{x^2-x+1}-\frac{x+1}{x^2+x+1}=\frac{10}{x\left(x^4+x^2+1\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2016

Ta có : x^4+x^2+1

=x^4+x+x^2-x+1

=x(x^3+1)+(x^2-x+1)

=(x^2+x+1)(x^2-x+1)

Suy ra ta có phương trình :

  X  -1     _    X  + 1   =       10                     

X^2-X +1    X^2+X +1     X(X^2-X+1)(X^2+X+1)

<=>  X^3 - 1 - (  X^3 + 1)       =        10                   

       (X^2-X+1)(X^2+X+1)            X(X^2-X+1)(X^2+X+1)

<=>         -2X                        =           10                  

         X(X^2-X+1)(X^2+X+1)         X(X^2-X+1)(X^2+X+1)

<=> -2X=10

<=>x =-5

vậy x=-5

24 tháng 1 2020

a) \(2\left(3x-1\right)-\left(5+3x\right)=3\left(2x-1\right)\)

\(\Leftrightarrow6x-2-5-3x=6x-3\)

\(\Leftrightarrow6x-3x-6x=-3+2+5\)

\(\Leftrightarrow-3x=4\)

\(\Leftrightarrow x=-\frac{4}{3}\)

b) \(3\left(x-\frac{1}{2}\right)+4\left(\frac{x}{3}-\frac{1}{3}\right)=\frac{x}{4}\)

\(\Leftrightarrow3x-\frac{3}{2}+\frac{4}{3}x-\frac{4}{3}=\frac{x}{4}\)

\(\Leftrightarrow3x+\frac{4}{3}x-\frac{x}{4}=\frac{3}{2}+\frac{4}{3}\)

\(\Leftrightarrow\frac{49}{12}x=\frac{17}{6}\)

\(\Leftrightarrow x=\frac{34}{49}\)

c) \(\frac{1}{5}\left(x-\frac{1}{3}\right)-4\left(\frac{x}{5}-\frac{1}{2}\right)=x\)

\(\Leftrightarrow\frac{1}{5}x-\frac{1}{15}-\frac{4}{5}x+2=x\)

\(\Leftrightarrow\frac{1}{5}x-\frac{4}{5}x-x=\frac{1}{15}-2\)

\(\Leftrightarrow-\frac{8}{5}x=-\frac{29}{15}\)

\(\Leftrightarrow x=\frac{29}{24}\)

24 tháng 4 2020

Hoàng Ngọc Anh viết đề sai rồi kìa haha

25 tháng 4 2020

ukm, cảm ơn đã nhắcleuleu

31 tháng 3 2020

a, Ta có : \(\frac{x+1}{2}+\frac{x-2}{4}=1-\frac{2\left(x-1\right)}{3}\)

=> \(\frac{6\left(x+1\right)}{12}+\frac{3\left(x-2\right)}{12}=\frac{12}{12}-\frac{8\left(x-1\right)}{12}\)

=> \(6\left(x+1\right)+3\left(x-2\right)=12-8\left(x-1\right)\)

=> \(6x+6+3x-6=12-8x+8\)

=> \(17x=20\)

=> \(x=\frac{20}{17}\)

b, Ta có : \(\frac{5x-1}{6}+x=\frac{6-x}{4}\)

=> \(\frac{5x-1+6x}{6}=\frac{6-x}{4}\)

=> \(4\left(11x-1\right)=6\left(6-x\right)\)

=> \(44x-4-36+6x=0\)

=> \(\)\(50x=40\)

=> \(x=\frac{4}{5}\)

c, Ta có : \(\frac{5\left(1-2x\right)}{3}+\frac{x}{2}=\frac{3\left(x-5\right)}{4}-2\)

=> \(\frac{20\left(1-2x\right)}{12}+\frac{6x}{12}=\frac{9\left(x-5\right)}{12}-\frac{24}{12}\)

=> \(20\left(1-2x\right)+6x=9\left(x-5\right)-24\)

=> \(20-40x+6x-9x+45+24=0\)

=> \(43x=89\)

=> \(x=\frac{89}{43}\)

Câu 6. Giải các phương trình sau: a, x+\(\frac{2x+\frac{x-1}{5}}{3}=1-\frac{3x-\frac{1-2x}{3}}{5}\); b, \(\frac{3x-1-\frac{x-1}{2}}{3}-\frac{2x+\frac{1-2x}{3}}{2}=\frac{\frac{3x-1}{2}}{5}-6\) Câu 7. Giải các phương trình sau: a, \(\frac{x-23}{24}+\frac{x-23}{25}=\frac{x-23}{26}+\frac{x-23}{27}\); b, \(\left(\frac{x+2}{98}+1\right)+\left(\frac{x+3}{97}+1\right)=\left(\frac{x+4+++==}{96}+1\right)+\left(\frac{x+5}{95}+1\right)\) c,...
Đọc tiếp

Câu 6. Giải các phương trình sau:

a, x+\(\frac{2x+\frac{x-1}{5}}{3}=1-\frac{3x-\frac{1-2x}{3}}{5}\); b, \(\frac{3x-1-\frac{x-1}{2}}{3}-\frac{2x+\frac{1-2x}{3}}{2}=\frac{\frac{3x-1}{2}}{5}-6\)

Câu 7. Giải các phương trình sau:

a, \(\frac{x-23}{24}+\frac{x-23}{25}=\frac{x-23}{26}+\frac{x-23}{27}\); b, \(\left(\frac{x+2}{98}+1\right)+\left(\frac{x+3}{97}+1\right)=\left(\frac{x+4+++==}{96}+1\right)+\left(\frac{x+5}{95}+1\right)\)

c, \(\frac{x+1}{2004}+\frac{x+2}{2003}=\frac{x+3}{2002}+\frac{x+4}{2001}\); d, \(\frac{201-6}{99}+\frac{203-6}{97}=\frac{205-x}{95}+3=0\)

e, \(\frac{x-45}{55}+\frac{x-47}{53}=\frac{x-55}{45}+\frac{x-53}{47}\); f, \(\frac{x+1}{9}+\frac{x+2}{8}=\frac{x+3}{7}+\frac{x+4}{6}\)

g, \(\frac{x+2}{98}+\frac{x+4}{96}=\frac{x+6}{94}+\frac{x+8}{92}\); h, \(\frac{2-x}{2002}-1=\frac{1-x}{2003}-\frac{x}{2004}\)

i, \(\frac{x^2-10x-29}{1971}+\frac{x^2-10x-27}{1973}=\frac{x^2-10x-1971}{29}+\frac{x^2-10x-1973}{27}\);

1
29 tháng 3 2020

Câu 6 :

a, Ta có : \(x+\frac{2x+\frac{x-1}{5}}{3}=1-\frac{3x-\frac{1-2x}{3}}{5}\)

=> \(\frac{15x}{15}+\frac{5\left(2x+\frac{x-1}{5}\right)}{15}=\frac{15}{15}-\frac{3\left(3x-\frac{1-2x}{3}\right)}{15}\)

=> \(15x+5\left(2x+\frac{x-1}{5}\right)=15-3\left(3x-\frac{1-2x}{3}\right)\)

=> \(15x+10x+\frac{5\left(x-1\right)}{5}=15-9x+\frac{3\left(1-2x\right)}{3}\)

=> \(15x+10x+x-1=15-9x+1-2x\)

=> \(15x+10x+x-1-15+9x-1+2x=0\)

=> \(37x-17=0\)

=> \(x=\frac{17}{37}\)

Vậy phương trình trên có nghiệm là \(S=\left\{\frac{17}{37}\right\}\)

Bài 7 :

a, Ta có : \(\frac{x-23}{24}+\frac{x-23}{25}=\frac{x-23}{26}+\frac{x-23}{27}\)

=> \(\frac{x-23}{24}+\frac{x-23}{25}-\frac{x-23}{26}-\frac{x-23}{27}=0\)

=> \(\left(x-23\right)\left(\frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27}\right)=0\)

=> \(x-23=0\)

=> \(x=23\)

Vậy phương trình trên có nghiệm là \(S=\left\{23\right\}\)

c, Ta có : \(\frac{x+1}{2004}+\frac{x+2}{2003}=\frac{x+3}{2002}+\frac{x+4}{2001}\)

=> \(\frac{x+1}{2004}+1+\frac{x+2}{2003}+1=\frac{x+3}{2002}+1+\frac{x+4}{2001}+1\)

=> \(\frac{x+2005}{2004}+\frac{x+2005}{2003}=\frac{x+2005}{2002}+\frac{x+2005}{2001}\)

=> \(\frac{x+2005}{2004}+\frac{x+2005}{2003}-\frac{x+2005}{2002}-\frac{x+2005}{2001}=0\)

=> \(\left(x+2005\right)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)

=> \(x+2005=0\)

=> \(x=-2005\)

Vậy phương trình trên có nghiệm là \(S=\left\{-2005\right\}\)

e, Ta có : \(\frac{x-45}{55}+\frac{x-47}{53}=\frac{x-55}{45}+\frac{x-53}{47}\)

=> \(\frac{x-45}{55}-1+\frac{x-47}{53}-1=\frac{x-55}{45}-1+\frac{x-53}{47}-1\)

=> \(\frac{x-100}{55}+\frac{x-100}{53}=\frac{x-100}{45}+\frac{x-100}{47}\)

=> \(\frac{x-100}{55}+\frac{x-100}{53}-\frac{x-100}{45}-\frac{x-100}{47}=0\)

=> \(\left(x-100\right)\left(\frac{1}{55}+\frac{1}{53}-\frac{1}{45}-\frac{1}{47}\right)=0\)

=> \(x-100=0\)

Vậy phương trình trên có nghiệm là \(S=\left\{100\right\}\)

9 tháng 4 2020

a)

\(\frac{7}{x-5}-2=\frac{3}{5-x}\\ \Leftrightarrow\frac{-7}{5-x}-2-\frac{3}{5-x}=0\\ \Leftrightarrow\frac{-7}{5-x}-\frac{10-2x}{5-x}-\frac{3}{5-x}=0\\ \Leftrightarrow\frac{-7-10+2x-3}{5-x}=0\\ \Leftrightarrow\frac{2x-20}{5-x}=0\\ \Rightarrow2x-20=0\\ \Rightarrow x=10\)

b)

\(\frac{2}{x+1}-\frac{1}{x-2}=\frac{3x-11}{\left(x+1\right)\cdot\left(x-2\right)}\\ \Leftrightarrow\frac{2}{x+1}-\frac{1}{x-2}-\frac{3x-11}{\left(x+1\right)\cdot\left(x-2\right)}=0\\ \Leftrightarrow\frac{2x-4}{\left(x+1\right)\cdot\left(x-2\right)}-\frac{x+1}{\left(x+1\right)\cdot\left(x-2\right)}-\frac{3x-11}{\left(x+1\right)\cdot\left(x-2\right)}=0\\ \Leftrightarrow\frac{2x-4-x-1-3x+11}{\left(x+1\right)\cdot\left(x-2\right)}=0\\ \Leftrightarrow\frac{6-2x}{\left(x+1\right)\cdot\left(x-2\right)}=0\\ \Rightarrow6-2x=0\\ \Rightarrow x=3\)

c)

\(\frac{1}{x}-\frac{x+2}{x-2}=\frac{2}{x\cdot\left(2-x\right)}\\ \Leftrightarrow\frac{1}{x}-\frac{x-2}{2-x}-\frac{2}{x\cdot\left(2-x\right)}=0\\ \Leftrightarrow\frac{2-x}{x\cdot\left(2-x\right)}-\frac{x^2-2x}{x\cdot\left(2-x\right)}-\frac{2}{x\cdot\left(2-x\right)}=0\\ \Leftrightarrow\frac{2-x-x^2+2x-2}{x\cdot\left(2-x\right)}=0\\ \Leftrightarrow\frac{x-x^2}{x\cdot\left(2-x\right)}=0\\ \Rightarrow x-x^2=0\\ \Rightarrow x\cdot\left(1-x\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\1-x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

28 tháng 1 2018

mới lớp 6 à!!!!