Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cái bài đầu giải BPT bn ghi cái dj ak ,mik cx k hỉu nữa
V mik giải bài 2 nghen, sửa lại đề bài đầu rồi mik giải cho
\(3x-3=|2x+1|\)
Điều kiện: \(3x-3\ge0\Leftrightarrow3x\ge3\Leftrightarrow x\ge1\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1=3x-3\\2x+1=-3x+3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3x=-1-3\\2x+3x=-1+3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}-x=-3\\5x=2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\left(n\right)\\x=\frac{2}{5}\left(l\right)\end{cases}}}\)
Vậy S={3}
Cài đề câu b ,bn xem lại nhé!
\(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}>\frac{x^2}{7}-\frac{2x-3}{5}\)
\(\Leftrightarrow\frac{2x-3}{35}+\frac{5x\left(x-2\right)}{35}-\frac{5x^2}{35}+\frac{7\left(2x-3\right)}{35}>0\)
\(\Leftrightarrow2x-3+5x\left(x-2\right)-5x^2+7\left(2x-3\right)>0\)
\(\Leftrightarrow2x-3+5x^2-10x-5x^2+14x-21>0\)
\(\Leftrightarrow6x-24>0\)
\(\Leftrightarrow x>4\)
VẬY TẬP NGHIỆM CỦA BẤT PHƯƠNG TRÌNH LÀ : S = { \(x\text{\x}>4\)}
\(\frac{6x+1}{18}+\frac{x+3}{12}\le\frac{5x+3}{6}+\frac{12-5x}{9}\)
\(\Leftrightarrow\frac{6\left(6x+1\right)}{108}+\frac{9\left(x+3\right)}{108}\le\frac{18\left(5x+3\right)}{108}+\frac{12\left(12-5x\right)}{108}\)
\(\Leftrightarrow36x+6+9x+27\le90x+54+144-60x\)
\(\Leftrightarrow36x+6+9x+27-90x-54-144+60x\le0\)
\(\Leftrightarrow15x-165\le0\)
\(\Leftrightarrow x\le11\)
VẬY TẬP NGHIỆM CỦA BẤT PHƯƠNG trình ..........
tk mk nka !!! chúc bạn học tốt !!!
ĐKXĐ: x\(x\ne\)1,-1
a) pt <=> \(\left(\frac{x}{x-1}+\frac{x}{x+1}\right)^2-\frac{2x^2}{x^2-1}=\frac{10}{9}\)
<=> \(\frac{4x^4}{\left(x^2-1\right)^2}-\frac{2x^2}{x^2-1}=\frac{10}{9}\)
Đặt: t=\(\frac{2x^2}{x^2-1}\)
Pt trở thành: \(t^2-t-\frac{10}{9}=0\)\(\Leftrightarrow9t^2-9t-10=0\)<=> \(\orbr{\begin{cases}t=-\frac{1}{3}\\t=\frac{5}{6}\end{cases}}\)
Nếu: \(\frac{2x^2}{x^2-1}=-\frac{1}{3}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{\frac{1}{7}}\\x=-\sqrt{\frac{1}{7}}\end{cases}\left(tm\right)}\)
Nếu: \(\frac{2x^2}{x^2-1}=\frac{5}{6}\)(vô nghiệm)
Vậy nghiệm là ...
http://vchat.vn/pictures/service/2017/02/iit1486637364.PNG
\(\frac{25x-655}{95}-\frac{5\left(x-12\right)}{209}=\frac{89-3x-\frac{2\left(x-18\right)}{5}}{11}\)
\(< =>\frac{5x-131}{19}=\frac{1631-52x-\frac{38x-684}{5}}{209}\)
\(< =>\left(5x-131\right)209=\left(1631-52x-\frac{38x-684}{5}\right)19\)
\(< =>55x-1441=1631-52x-\frac{38x-684}{5}\)
\(< =>3072-107x=\frac{38x-684}{5}\)
\(< =>\left(3072-107x\right)5=38x-684\)
\(< =>15360-535x-38x-684=0\)
\(< =>14676=573x< =>x=\frac{14676}{573}=\frac{4892}{191}\)
nghệm xấu thế
\(\frac{8\left(x+22\right)}{45}-\frac{7x+149+\frac{6\left(x+12\right)}{5}}{9}=\frac{x+35+\frac{2\left(x+50\right)}{9}}{5}\)
\(< =>\frac{8x+176}{45}-\frac{41x+817}{45}=\frac{11x+415}{45}\)
\(< =>993-33x-11x-415=0\)
\(< =>578=44x< =>x=\frac{289}{22}\)
ĐẶt x+1/x = m
suy ra x2+1/x2=m2-2
Vậy m2-2+9/2m+7=0
2m2+9m+10=0
(2m2+4m) +(5m+10)=0
2m(m+2)+5(m+2)=0
\(\Leftrightarrow\orbr{\begin{cases}m+2=0\\2m+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}m=-2\\m=\frac{-5}{2}\end{cases}}\)
Với m=-2
x+1/x=-2 hay x2+2x+1=0
x=-1
Với m=-5/2 làm tương tự
a/ Do \(x=0\) không phải nghiệm, pt tương đương:
\(\frac{3}{x+\frac{3}{x}-1}-\frac{2}{x+\frac{3}{x}-3}=-1\)
Đặt \(x+\frac{3}{x}-3=a\) ta được:
\(\frac{3}{a+2}-\frac{2}{a}=-1\)
\(\Leftrightarrow3a-2\left(a+2\right)=-a\left(a+2\right)\)
\(\Leftrightarrow a^2+3a-4=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{3}{x}-3=1\\x+\frac{3}{x}-3=-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2-4x+3=0\\x^2+x+3=0\end{matrix}\right.\)
b/ Đặt \(x^2+2x+\frac{5}{2}=a>0\)
Phương trình trở thành:
\(\frac{1}{\left(a-\frac{1}{2}\right)^2}+\frac{1}{\left(a+\frac{1}{2}\right)^2}=\frac{5}{4}\)
\(\Leftrightarrow4\left(a+\frac{1}{2}\right)^2+4\left(a-\frac{1}{2}\right)^2=5\left(a^2-\frac{1}{4}\right)^2\)
\(\Leftrightarrow8a^2+2=5\left(a^4-\frac{1}{2}a^2+\frac{1}{16}\right)\)
\(\Leftrightarrow5a^4-\frac{21}{2}a^2-\frac{27}{16}=0\Rightarrow\left[{}\begin{matrix}a^2=\frac{9}{4}\\a^2=-\frac{3}{20}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2+2x+\frac{5}{2}=\frac{3}{2}\\x^2+2x+\frac{5}{2}=-\frac{3}{2}\end{matrix}\right.\)
c/ ĐKXĐ: \(x\ne\pm1\)
\(\Leftrightarrow\left(\frac{x}{x+1}\right)^2+\left(\frac{x}{x-1}\right)^2+\frac{2x^2}{x^2-1}-\frac{2x^2}{x^2-1}-\frac{10}{9}=0\)
\(\Leftrightarrow\left(\frac{x}{x+1}+\frac{x}{x-1}\right)^2-\frac{2x^2}{x^2-1}-\frac{10}{9}=0\)
\(\Leftrightarrow\left(\frac{2x^2}{x^2-1}\right)^2-\frac{2x^2}{x^2-1}-\frac{10}{9}=0\)
Đặt \(\frac{2x^2}{x^2-1}=a\)
\(\Rightarrow a^2-a-\frac{10}{9}=0\) \(\Rightarrow\left[{}\begin{matrix}a=\frac{5}{3}\\a=-\frac{2}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\frac{2x^2}{x^2-1}=\frac{5}{3}\\\frac{2x^2}{x^2-1}=-\frac{2}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2=-5\left(l\right)\\x^2=\frac{1}{4}\end{matrix}\right.\) \(\Rightarrow x=\pm\frac{1}{2}\)
d/ĐKXĐ: ...
\(\Leftrightarrow\left(x^2+\frac{36}{x^2}\right)-13\left(x-\frac{6}{x}\right)=0\)
Đặt \(x-\frac{6}{x}=a\Rightarrow x+\frac{36}{x^2}=a^2+12\)
\(\Rightarrow a^2-13a+12=0\Rightarrow\left[{}\begin{matrix}a=1\\a=12\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-\frac{6}{x}=1\\x-\frac{6}{x}=12\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2-x-6=0\\x^2-12x-6=0\end{matrix}\right.\)
\(\frac{1}{x^2}+\frac{1}{\left(x+2\right)^2}=\frac{10}{9}\)(ĐKXĐ: \(x\ne0;x\ne-2\) )
\(\Leftrightarrow\frac{\left(x+2\right)^2+x^2}{x^2\left(x+2\right)^2}=\frac{10}{9}\)
\(\Leftrightarrow\frac{2x^2+4x+4}{x^4+4x^3+4x^2}=\frac{10}{9}\Rightarrow9\left(2x^2+4x+4\right)=10\left(x^4+4x^3+4x^2\right)\)
\(\Leftrightarrow10x^4+40x^3+40x^2=18x^2+36x+36\)
\(\Leftrightarrow10x^4+40x^3+22x^2-36x-36=0\)
\(\Leftrightarrow10x^3\left(x-1\right)+50x^2\left(x-1\right)+72x\left(x-1\right)+36\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(10x^3+50x^2+72x+36\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[10x^2\left(x+3\right)+20x\left(x+3\right)+12\left(x+3\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+3\right)\left(10x^2+20x+12\right)=0\)
Mà \(10x^2+20x+12=10\left(x+1\right)^2+2>0\left(\forall x\right)\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-3\end{cases}}\)(thỏa mãn ĐKXĐ)
Tập nghiệm của pt: \(S=\left\{1;-3\right\}\)