\(\sqrt{2x^2+x+9}+\sqrt{2x^2-x+1}=x+4\)

b) 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2020

ĐKXĐ : \(x\ge1\)

PT đã cho tương đương với :

\(\sqrt{3x-2}+\sqrt{x-1}=\left[3x-2+2\sqrt{3x^2-5x+2}+x-1\right]-6\)

\(\Leftrightarrow\sqrt{3x-2}+\sqrt{x-1}=\left(\sqrt{3x-2}+\sqrt{x-1}\right)^2-6\)

Đặt \(\sqrt{3x-2}+\sqrt{x-1}=t\left(t\ge1\right)\)

Khi đó : \(t^2-t-6=0\Leftrightarrow\orbr{\begin{cases}t=3\\t=-2\left(loai\right)\end{cases}}\)

\(\Rightarrow\sqrt{3x-2}+\sqrt{x-1}=3\)

từ đó dễ dàng tìm được x

29 tháng 5 2020

Làm tiếp bài của @Thanh Tùng DZ

Thay t=3 vào cách đặt ta được \(\sqrt{3x-2}+\sqrt{x-1}=3\left(3a\right)\)

Ta có \(\left(3a\right)\Leftrightarrow4x-3+2\sqrt{3x^2-5x+2}=9\)

\(\Leftrightarrow\sqrt{3x^2-5x+2}=6-2x\)

\(\Leftrightarrow\hept{\begin{cases}6-2x\ge0\\3x^2-5x+2=36-24x+4x^2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\le3\\x=2;x=17\end{cases}\Leftrightarrow x=2}\)

NV
30 tháng 5 2020

b/

Do vế trái luôn dương nên vế phải dương \(\Rightarrow x>0\)

\(\Leftrightarrow2x-\sqrt{2x^2+x+1}+x-\sqrt{x^2-x+1}=0\)

\(\Leftrightarrow\frac{2x^2-x-1}{2x+\sqrt{2x^2+x+1}}+\frac{x-1}{x+\sqrt{x^2-x+1}}=0\)

\(\Leftrightarrow\frac{\left(x-1\right)\left(2x+1\right)}{2x+\sqrt{2x^2+x+1}}+\frac{x-1}{x+\sqrt{x^2-x+1}}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{2x+1}{2x+\sqrt{2x^2+x+1}}+\frac{1}{x+\sqrt{x^2-x+1}}\right)=0\)

\(\Leftrightarrow x-1=0\) (ngoặc phía sau luôn dương với \(x>0\))

\(\Rightarrow x=1\)

NV
30 tháng 5 2020

a/ Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2+x+9}=a>0\\\sqrt{2x^2-x+1}=b>0\end{matrix}\right.\) \(\Rightarrow a^2-b^2=2\left(x+4\right)\)

Phương trình trở thành:

\(a+b=\frac{a^2-b^2}{2}\Leftrightarrow2\left(a+b\right)=\left(a+b\right)\left(a-b\right)\)

\(\Leftrightarrow a-b=2\Leftrightarrow a=b+2\)

\(\Leftrightarrow\sqrt{2x^2+x+9}=\sqrt{2x^2-x+1}+2\)

\(\Leftrightarrow2x^2+x+9=2x^2-x+1+4+4\sqrt{2x^2-x+1}\)

\(\Leftrightarrow x+2=2\sqrt{2x^2-x+1}\) (\(x\ge-2\))

\(\Leftrightarrow x^2+4x+4=4\left(2x^2-x+1\right)\)

\(\Leftrightarrow7x^2-8x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\frac{8}{7}\end{matrix}\right.\)

 

21 tháng 7 2017

a đề sai hay sao mà vô nghiệm ?

b)Áp dụng BĐT Cauchy-Schwarz ta có:

\(VP^2=\left(\sqrt{2x+1}+\sqrt{17-2x}\right)^2\)

\(\le\left(1+1\right)\left(2x+1+17-2x\right)=36\)

\(\Rightarrow VP^2\le36\Rightarrow VP\le6\)

Lại có: \(VT=x^4-8x^3+17x^2-8x+22\)

\(=\left(x-4\right)^4+8\left(x-4\right)^3+17\left(x-4\right)^2+6\ge6\)

Thấy: \(VT\le VP=6\)\(\Rightarrow VT=VP=6\)

\(\Rightarrow\left(x-4\right)^4+8\left(x-4\right)^3+17\left(x-4\right)^2+6=6\)

Suy ra x=4

ko hiểu chỗ nào ib nhé

1 tháng 4 2019

lời giải của bạn trên có 1 xíu sai nhé

Là BĐT Bu-nhi-a Cốp-xki chứ ạ ?

16 tháng 8 2017

a)\(\sqrt{2x^2+8x+6}+\sqrt{x^2-1}=2x+2\)

ĐK:tự xác định 

\(pt\Leftrightarrow\sqrt{2\left(x+1\right)\left(x+3\right)}+\sqrt{\left(x-1\right)\left(x+1\right)}-2\left(x+1\right)=0\)

\(\Leftrightarrow\sqrt{x+1}\left(\sqrt{2\left(x+3\right)}+\sqrt{x-1}-2\sqrt{x+1}\right)=0\)

Suy ra x=-1 là nghiệm và pt \(\sqrt{2\left(x+3\right)}+\sqrt{x-1}=2\sqrt{x+1}\)

\(\Leftrightarrow2\left(x+3\right)+x-1+2\sqrt{2\left(x+3\right)\left(x-1\right)}=4\left(x+1\right)\)

\(\Leftrightarrow2\sqrt{2\left(x+3\right)\left(x-1\right)}=x-1\)

\(\Leftrightarrow8\left(x+3\right)\left(x-1\right)-\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x-1\right)\left(8x+24-x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(7x+25\right)=0\Rightarrow x=1\) (thỏa và 7x+25=0 loại do điều kiện....)

b nghiệm xấu quá để mình xem lại :v

\(\Leftrightarrow\sqrt{2x+6}+\sqrt{x-1}=2\sqrt{x+1}\)

\(\Leftrightarrow\sqrt{2x+6}-2\sqrt{2}+\sqrt{x-1}=2\sqrt{x+1}-2\sqrt{2}\)

\(\Leftrightarrow\frac{2\left(x-1\right)}{\sqrt{2x+6}+2\sqrt{2}}+\sqrt{x-1}=\frac{2\sqrt{x-1}}{\sqrt{x+1}+2\sqrt{2}}\)

\(\Leftrightarrow\frac{2\sqrt{x-1}}{\sqrt{2x+6}+2\sqrt{2}}+1=\frac{2\sqrt{x-1}}{\sqrt{x+1}+1\sqrt{2}}\)

đến đây thì chịu 

tìm đc 1 nghiệm là -1;1,nên bình phương lên

4 tháng 9 2020

Đề hơi lag rồi bạn oi, Vì vế phải toàn căn nên sẽ không âm, khi đó vế trái ko âm, khi đó x>5/2 mà như vậy thì \(\sqrt{2-x}\)sẽ không xác định ---> fail

4 tháng 8 2019


╔┓┏╦━━╦┓╔┓╔━━╗
║┗┛║┗━╣┃║┃║ 0 0 ║
║┏┓║┏━╣┗╣┗╣╰°╯║
╚┛┗╩━━╩━╩━╩-2019||

4 tháng 8 2019

a)   x=-1

x=8