Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3-6x^2+5x+12>0\\ < =>\left(x^3-5x-x+5x\right)+12>0\\ < =>\left[\left(x^3-x\right)-\left(5x-5x\right)\right]+12>0\\ < =>x^2+12>0\\ < =>x^2>-12\\ =>x\in R\\ BPTcóvôsốnghiem\)
a) x3+4x2+x-6=0
<=> x3+x2-2x+3x2+3x-6=0
<=>x(x2+x-2)+3(x2+x-2)=0
<=>(x+3)(x2+x-2)=0
<=>(x+3)(x2+2x-x-2)=0
<=>(x+3)[x(x+2)-(x+2)]=0
<=>(x+3)(x-1)(x+2)=0
=> x+3=0 hay
x-1=0 hay
x+2=0
<=> x=-3 hay x=1 hay x=-2
b)x3-3x2+4=0
\(\Leftrightarrow x^3-4x^2+4x+x^2-4x+4=0\)
\(\Leftrightarrow x\left(x^2-4x+4\right)+\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)^2=0\)
\(\Rightarrow\left\{\begin{matrix}x+1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x=-1\\x=2\end{matrix}\right.\)
Ý 3 bạn bỏ dòng áp dụng....ta có nhé
\(a^2+b^2+c^2+d^2\ge a\left(b+c+d\right)\)
\(\Leftrightarrow\left(\frac{a^2}{4}-2.\frac{a}{2}b+b^2\right)+\left(\frac{a^2}{4}-2.\frac{a}{2}c+c^2\right)+\)\(\left(\frac{a^2}{4}-2.\frac{a}{d}d+d^2\right)+\frac{a^2}{4}\ge0\forall a;b;c;d\)
\(\Leftrightarrow\left(\frac{a}{2}-b\right)+\left(\frac{a}{2}-c\right)+\)\(\left(\frac{a}{2}-d\right)^2+\frac{a^2}{4}\ge0\forall a;b;c;d\)( luôn đúng )
Dấu " = " xảy ra <=> a=b=c=d=0
6) Sai đề
Sửa thành:\(x^2-4x+5>0\)
\(\Leftrightarrow\left(x-2\right)^2+1>0\)
7) Áp dụng BĐT AM-GM ta có:
\(a+b\ge2.\sqrt{ab}\)
Dấu " = " xảy ra <=> a=b
\(\Leftrightarrow\frac{ab}{a+b}\le\frac{ab}{2.\sqrt{ab}}=\frac{\sqrt{ab}}{2}\)
Chứng minh tương tự ta có:
\(\frac{cb}{c+b}\le\frac{cb}{2.\sqrt{cb}}=\frac{\sqrt{cb}}{2}\)
\(\frac{ca}{c+a}\le\frac{ca}{2.\sqrt{ca}}=\frac{\sqrt{ca}}{2}\)
Dấu " = " xảy ra <=> a=b=c
Cộng vế với vế của các BĐT trên ta có:
\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}\)
Áp dụng BĐT AM-GM ta có:
\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}\le\frac{\frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}}{2}=\frac{2\left(a+b+c\right)}{4}=\frac{a+b+c}{2}\)
Dấu " = " xảy ra <=> a=b=c
1)\(x^3+y^3\ge x^2y+xy^2\)
\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)\ge xy\left(x+y\right)\)
\(\Leftrightarrow x^2-xy+y^2\ge xy\) ( vì x;y\(\ge0\))
\(\Leftrightarrow x^2-2xy+y^2\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng )
\(\Rightarrow x^3+y^3\ge x^2y+xy^2\)
Dấu " = " xảy ra <=> x=y
2) \(x^4+y^4\ge x^3y+xy^3\)
\(\Leftrightarrow x^4-x^3y+y^4-xy^3\ge0\)
\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)( luôn đúng )
Dấu " = " xảy ra <=> x=y
3) Áp dụng BĐT AM-GM ta có:
\(\left(a-1\right)^2\ge0\forall a\Leftrightarrow a^2-2a+1\ge0\)\(\forall a\Leftrightarrow\frac{a^2}{2}+\frac{1}{2}\ge a\forall a\)
\(\left(b-1\right)^2\ge0\forall b\Leftrightarrow b^2-2b+1\ge0\)\(\forall b\Leftrightarrow\frac{b^2}{2}+\frac{1}{2}\ge b\forall b\)
\(\left(a-b\right)^2\ge0\forall a;b\Leftrightarrow a^2-2ab+b^2\ge0\)\(\forall a;b\Leftrightarrow\frac{a^2}{2}+\frac{b^2}{2}\ge ab\forall a;b\)
Cộng vế với vế của các bất đẳng thức trên ta được:
\(a^2+b^2+1\ge ab+a+b\)
Dấu " = " xảy ra <=> a=b=1
4) \(a^2+b^2+c^2+\frac{3}{4}\ge a+b+c\)
\(\Leftrightarrow\left[a^2-2.a.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\)\(+\left[b^2-2.b.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\)\(+\left[c^2-2.c.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\ge0\forall a;b;c\)
\(\Leftrightarrow\left(a-\frac{1}{2}\right)^2\)\(+\left(b-\frac{1}{2}\right)^2\)\(+\left(c-\frac{1}{2}\right)^2\ge0\forall a;b;c\)( luôn đúng)
Dấu " = " xảy ra <=> a=b=c=1/2
Tập xác định của phương trình
2
Rút gọn thừa số chung
3
Biệt thức
4
Biệt thức
5
Nghiệm
Câu 1
\(x^3-2x^2+3x-6< 0\\ \Leftrightarrow x^2\left(x-2\right)+3\left(x-2\right)< 0\\ \Leftrightarrow\left(x-2\right)\left(x^2+3\right)< 0\\ \Leftrightarrow\left\{{}\begin{matrix}x-2< 0\Leftrightarrow x>2\\x^2+3< 0\Leftrightarrow x^2< 0\Leftrightarrow x\in\varnothing\end{matrix}\right.\)
S = {x/x>2}
câu 1 : tách 6=2.3
Câu 2: tách -4x = -3x-x
Câu 3 tách x= 2x-3x
\(1,\left(x+y\right)\left(x^2-xy+y^2\right)\ge xy\left(x+y\right)\Leftrightarrow x^2-2xy+y^2\ge0\))
\(\Leftrightarrow\left(x+y\right)^2\ge o\)
a: \(\Leftrightarrow x^2-5x+5-9x^2+27x+2x-6=1\)
\(\Leftrightarrow-8x^2+24x-2=0\)
\(\Leftrightarrow8x^2-24x+2=0\)
\(\text{Δ}=\left(-24\right)^2-4\cdot8\cdot2=512>0\)
Do đó: PHương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{3+2\sqrt{2}}{2}\\x_2=\dfrac{3-2\sqrt{2}}{2}\end{matrix}\right.\)
c: \(\Leftrightarrow x^2-2x+1-3\left|x-1\right|+2=0\)
\(\Leftrightarrow\left(\left|x-1\right|\right)^2-3\left|x-1\right|+2=0\)
\(\Leftrightarrow\left(\left|x-1\right|-1\right)\left(\left|x-1\right|-2\right)=0\)
\(\Leftrightarrow x\in\left\{2;0;3;-1\right\}\)
d: \(\Leftrightarrow x^4-4x^2+4+5\left|x^2-2\right|+4=0\)
\(\Leftrightarrow\left(\left|x^2-2\right|\right)^2+5\left|x^2-2\right|+4=0\)(vô lý)
A) (x-3)2 < x2 -5x +4
\(\Leftrightarrow\)( x-3 )2 -x2+ 5x -4 < 0
\(\Leftrightarrow\)(x -3 -x ) (x-3 +x) +5x -4 < 0
\(\Leftrightarrow\)-3(2x -3 ) + 5x -4 < 0
\(\Leftrightarrow\)-6x +9 +5x -4 < 0
\(\Leftrightarrow\) -x +5 < 0
\(\Leftrightarrow\) 5< x
Vậy bat phuong trinh A có nghiệm là x >5
B ) x2- 4x +3 \(\ge\)0
\(\Leftrightarrow\)x2 - 3x -x +3 \(\ge\)0
\(\Leftrightarrow\) x(x-3) -(x- 3) \(\ge\)0
\(\Leftrightarrow\)(x- 1) (x- 3) \(\ge\)0
\(\Leftrightarrow\)(x-1) \(\ge\)0 hoặc x-3 \(\ge\)0
rồi bạn giải tiếp ,keets luận cả hai trường hợp
C) 4x -\(\frac{5}{3}\)> 7-\(\frac{x}{5}\)
\(\Leftrightarrow\)\(\frac{5\left(12x-5\right)}{15}\)>\(\frac{3\left(35-x\right)}{15}\)
\(\Leftrightarrow\)60x -25 > 105 -3x
\(\Leftrightarrow\)63x -130 > 0
rôi giải tiêp va kêt luan