K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2015

Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath tích mình nha

1 tháng 2 2019

\(\Leftrightarrow x^4\left(x-1\right)-4x^3\left(x-1\right)+4x\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(x^4-4x^3+4x-1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[x^3\left(x-1\right)-3x^2\left(x-1\right)-3x\left(x-1\right)+\left(x-1\right)\right]\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x^3-3x^2-3x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\left[\left(x+1\right)\left(x^2-x+1\right)-3x\left(x+1\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x+1\right)\left(x^2-4x+1\right)=0\)

- Khi x - 1 = 0 thì x = 1

- Khi x + 1 = 0 thì x = -1

- Khi \(x^2-4x+1=0\Leftrightarrow\left(x-2\right)^2=3\Leftrightarrow\orbr{\begin{cases}x=\sqrt{3}+2\\x=-\sqrt{3}+2\end{cases}}\)

Pt có tậo nghiệm là: \(S=\left\{1;-1;\sqrt{3}+2;-\sqrt{3}+2\right\}\)

25 tháng 8 2020

a) Ta có: \(\left(x+1\right)^4+\left(x-3\right)^4=0\)

Nhận thấy: \(\hept{\begin{cases}\left(x+1\right)^4\ge0\left(\forall x\right)\\\left(x-3\right)^4\ge0\left(\forall x\right)\end{cases}\Rightarrow}\left(x+1\right)^4+\left(x-3\right)^4\ge0\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x+1\right)^4=0\\\left(x-3\right)^4=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\x=3\end{cases}}\) (mâu thuẫn)

=> pt vô nghiệm

b) \(x^4+2x^3-4x^2-5x-6=0\)

\(\Leftrightarrow\left(x^4-2x^3\right)+\left(4x^3-8x^2\right)+\left(4x^2-8x\right)+\left(3x-6\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3+4x^2+4x+3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[\left(x^3+3x^2\right)+\left(x^2+3x\right)+\left(x+3\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+3\right)\left(x^2+x+1\right)=0\)

Mà \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\left(\forall x\right)\)

=> \(\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)

25 tháng 8 2020

a,\(\left(x+1\right)^4+\left(x-3\right)^4=0\)

\(x^4-1+x^4-81=0\)

\(2x^4-82=0\)

\(2x^4=82\)

\(x^4=41\)

\(x=\sqrt[4]{41}\)

\(\Rightarrow\)vô nghiệm

8 tháng 1 2018

\(6x^4+5x^3-38x^2+5x+6=0\\ \Leftrightarrow6x^4+20x^3+6x^2-15x^3-50x^2-15x+6x^2+20x+6=0\\ \Leftrightarrow2x^2\left(3x^2+10x+3\right)-5x\left(3x^2+10x+3\right)+2\left(3x^2+10x+3\right)=0\\ \Leftrightarrow\left(3x^2+10x+3\right)\left(2x^2-5x+2\right)=0\\ \Leftrightarrow\left(3x^2+x+9x+3\right)\left(2x^2-x-4x+2\right)=0\\ \Leftrightarrow\left[x\left(3x+1\right)+3\left(3x+1\right)\right]\left[x\left(2x-1\right)-2\left(2x-1\right)\right]=0\\ \Leftrightarrow\left(3x+1\right)\left(x+3\right)\left(2x-1\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}3x+1=0\\x+3=0\\2x-1=0\\x-2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{3}\\x=-3\\x=\dfrac{1}{2}\\x=2\end{matrix}\right.\)

9 tháng 3 2018

                    \(6x^4+5x^3-38x^2+5x+6=0\)

\(\Leftrightarrow\)\(6x^4-12x^3+17x^3-34x^2-4x^2+8x-3x+6=0\)

\(\Leftrightarrow\)\(\left(x-2\right)\left(6x^3+17x^2-4x-3\right)=0\)

\(\Leftrightarrow\)\(\left(x-2\right)\left(6x^3+18x^2-x^2-3x-x-3\right)=0\)

\(\Leftrightarrow\)\(\left(x-2\right)\left(x+3\right)\left(6x^2-x-1\right)=0\)

\(\Leftrightarrow\)\(\left(x-2\right)\left(x+3\right)\left(6x^2-3x+2x-1\right)=0\)

\(\Leftrightarrow\)\(\left(x-2\right)\left(x+3\right)\left(2x-1\right)\left(3x+1\right)=0\)

P/s: lm tiếp nhé

\(\Leftrightarrow\left(x^2-x-3\right)\left(x^2+x-1\right)=0\)

hay \(x\in\left\{\dfrac{1+\sqrt{13}}{2};\dfrac{1-\sqrt{13}}{2};\dfrac{-1+\sqrt{5}}{2};\dfrac{-1-\sqrt{5}}{2}\right\}\)

25 tháng 4 2015

x- 3x - 2x +6 = x(x - 3) - 2(x - 3)

                  =(x - 3)(x - 2)

suy ra ta tìm được nghiệm của pt là x= 3 hoặc x=2

15 tháng 2 2017

a) Gần giống cho nó giống luôn.

cần thêm (-x^3+2x^2-x) là giống

\(\left(x-1\right)^4+x^3-2x^2+x=\left(x-1\right)^4+x\left(x^2-2x+1\right)=\left(x-1\right)^4+x\left(x-1\right)^2\)

\(\left(x-1\right)^2\left[\left(x-1\right)^2+x\right]\)

\(\left[\begin{matrix}x-1=0\Rightarrow x=0\\\left(x-1\right)^2+x=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=0\end{matrix}\right.\)

Nghiệm duy nhất: x=1

25 tháng 1 2019

câu d