Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ĐK:x\in R\)
Đặt \(x^2-2x=a\), PTTT:
\(-a+\sqrt{6a+7}=0\\ \Leftrightarrow\sqrt{6a+7}=a\\ \Leftrightarrow a^2-6a-7=0\\ \Leftrightarrow\left[{}\begin{matrix}a=7\\a=-1\left(loại.do.a=\sqrt{6a+7}\ge0\right)\end{matrix}\right.\\ \Leftrightarrow a=7\\ \Leftrightarrow x^2-2x-7=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1+2\sqrt{2}\\x=1-2\sqrt{2}\end{matrix}\right.\)
Ta có
\(\left\{{}\begin{matrix}\sqrt{2x^2-4x+3}=\sqrt{2\left(x-1\right)^2+1}\ge\sqrt{1}=1\\\sqrt{3x^2-6x+7}=\sqrt{3\left(x-1\right)^2+4}\ge\sqrt{4}=2\end{matrix}\right.\) \(\forall x\)
\(\Rightarrow VT=\sqrt{2x^2-4x+3}+\sqrt{3x^2-6x+7}\ge3\) \(\forall x\)
Lại có \(VP=2-x^2+2x=3-\left(x-1\right)^2\le3\) \(\forall x\)
\(\Rightarrow\sqrt{2x^2-4x+3}+\sqrt{3x^2-6x+7}=2-x^2+2x\) \(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2\left(x-1\right)^2+1}=1\\\sqrt{3\left(x-1\right)^2+4}=2\\3-\left(x-1\right)^2=3\end{matrix}\right.\)
\(\Leftrightarrow\left(x-1\right)^2=0\Rightarrow x=1\)
Vậy pt có nghiệm duy nhất \(x=1\)
=>|x-1|+|x-3|=1
TH1: x<1
Pt sẽ la 1-x+3-x=1
=>4-2x=1
=>x=3/2(loại)
TH2: 1<=x<3
Pt sẽ là x-1+3-x=1
=>2=1(loại)
TH3: x>=3
Pt sẽ là x-1+x-3=1
=>2x-4=1
=>2x=5
=>x=5/2(loại)
ĐK: \(x^2-1\ge0\)
pt <=> \(\left(x^2+2x+1\right)-2\left(x+1\right)\sqrt{x^2-1}+\left(x^2-1\right)-4x^2+4x-1=0\)
<=> \(\left[\left(x+1\right)^2-2\left(x+1\right)\sqrt{x^2-1}+\left(x^2-1\right)\right]-\left(2x-1\right)^2=0\)
<=> \(\left(x+1-\sqrt{x^2-1}\right)^2-\left(2x-1\right)^2=0\)
<=> \(\left(x+1-\sqrt{x^2-1}-2x+1\right)\left(x+1-\sqrt{x^2-1}+2x-1\right)=0\)
Phương trình tích. Dễ rồi đúng ko? Tự làm tiếp nhé!
\(3x^3+6x^2-12x+8=0\)
\(\Leftrightarrow4x^3=x^3-6x^2+12x-8\)
\(\Leftrightarrow4x^3=\left(x-2\right)^3\)
\(\Rightarrow\sqrt[3]{4}.x=x-2\)
\(\Rightarrow x=\dfrac{2}{1-\sqrt[3]{4}}\)
a) 2x4 - x3 -2x2 -x +2=0
=> (2x4- 2x3) +(x3-x2) -(x2 -x) -(2x-2)=0
=>(x-1)(2x3+x2-x-2)=0
=>(x-1)2( 2x2+3x+2)=0 ( vì 2x2+3x+2>0)
=> x-1=0 => x =1