Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\frac{3x+2}{\sqrt{x+2}}=2\sqrt{x+2}\)
\(\Rightarrow3x+2=2\sqrt{x+2}.\sqrt{x+2}\)
\(\Rightarrow3x+2=2\left(x+2\right)\)
\(\Rightarrow3x+2=2x+4\)
\(\Rightarrow3x-2x=4-2\)
\(\Rightarrow x=2\)
\(b,\sqrt{4x^2-1}-2\sqrt{2x+1}=0\)
\(\Rightarrow\sqrt{\left(2x+1\right)\left(2x-1\right)}-2\sqrt{2x+1}=0\)
\(\Rightarrow\sqrt{2x+1}\left(\sqrt{2x-1}-2\right)=0\)
\(\Rightarrow\hept{\begin{cases}\sqrt{2x+1}=0\\\sqrt{2x-1}-2=0\end{cases}\Rightarrow\orbr{\begin{cases}2x+1=0\\\sqrt{2x-1}=2\end{cases}\Rightarrow}\orbr{\begin{cases}2x=-1\\2x-1=4\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{1}{2}\\2x=5\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{5}{2}\end{cases}}}\)
\(c,\sqrt{x-2}+\sqrt{4x-8}-\frac{2}{5}\sqrt{\frac{25x-50}{4}}=4\)
\(\Rightarrow\sqrt{x-2}+\sqrt{4\left(x-2\right)}-\frac{2}{5}\sqrt{\frac{25\left(x-2\right)}{4}}=4\)
\(\Rightarrow\sqrt{x-2}+2\sqrt{x-2}-\frac{2}{5}.\frac{5\sqrt{x-2}}{2}=4\)
\(\Rightarrow\sqrt{x-2}+2\sqrt{x-2}-\sqrt{x-2}=4\)
\(\Rightarrow2\sqrt{x-2}=4\)
\(\Rightarrow\sqrt{x-2}=2\)
\(\Rightarrow x-2=4\)
\(\Rightarrow x=6\)
\(d,\sqrt{x+4}-\sqrt{1-x}=\sqrt{1-2x}\)
\(\Rightarrow\sqrt{x+4}=\sqrt{1-2x}+\sqrt{1-x}\)
\(\Rightarrow x+4=1-2x+2\sqrt{\left(1-2x\right)\left(1-x\right)}+1-x\)
\(\Rightarrow x+4=2-3x+2\sqrt{1-3x+2x^2}\)
\(\Rightarrow x+4-2+3x=2\sqrt{1-3x+2x^2}\)
\(\Rightarrow4x+2=2\sqrt{1-3x+2x^2}\)
\(\Rightarrow2x+1=\sqrt{1-3x+2x^2}\)
\(\Rightarrow4x^2+4x+1=1-3x+2x^2\)
\(\Rightarrow4x^2-2x^2+4x+3x+1-1=0\)
\(\Rightarrow2x^2+7x=0\)
\(\Rightarrow x\left(2x+7\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\2x+7=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{-7}{2}\end{cases}}}\)
\(e,\frac{2x}{\sqrt{5}-\sqrt{3}}-\frac{2x}{\sqrt{3}+1}=\sqrt{5}+1\)
\(\frac{2x\left(\sqrt{5}+\sqrt{3}\right)}{5-3}-\frac{2x\left(\sqrt{3}-1\right)}{3-1}=\sqrt{5}+1\)
\(\Rightarrow x\left(\sqrt{5}+\sqrt{3}\right)-x\left(\sqrt{3}-1\right)=\sqrt{5}+1\)
\(\Rightarrow\sqrt{5}x+\sqrt{3}x-\sqrt{3x}+x=\sqrt{5}+1\)
\(\Rightarrow\sqrt{5}x+x=\sqrt{5}+1\)
\(\Rightarrow x\left(\sqrt{5}+1\right)=\sqrt{5}+1\)
\(\Rightarrow x=1\)
1) đặt đk rùi bình phương 2 vế là ok
2) \(pt\Leftrightarrow\frac{\sqrt{x}-\sqrt{x+2}}{x-x-2}+\frac{\sqrt{x+2}-\sqrt{x+4}}{x+2-x-4}+\frac{\sqrt{x+4}-\sqrt{x+6}}{x+4-x-6}=\frac{\sqrt{10}}{2}-1\)(ĐKXĐ : \(x\ge0\))
<=> \(\frac{\sqrt{x}-\sqrt{x+6}}{-2}=\frac{\sqrt{10}}{2}-1\)
<=> \(\frac{\sqrt{x+6}-\sqrt{x}}{2}=\frac{\sqrt{10}-2}{2}\)
<=> \(\sqrt{x+6}-\sqrt{x}=\sqrt{10}-2\)
<=> \(\sqrt{x+6}+2=\sqrt{10}+\sqrt{x}\)
đến đây bình phương 2 vế rùi giải bình thường nhé
a) \(x+1=\sqrt{2\left(x+1\right)+2\sqrt{2\left(x+1\right)+2\sqrt{4\left(x+1\right)}}}\)
<=> \(\left(x+1\right)^2=\left[\sqrt{2\left(x+1\right)+2\sqrt{2\left(x+1\right)+2\sqrt{4\left(x+1\right)}}}\right]^2\)
<=> \(x^2+2x+1=2x+2+2\sqrt{2x+2+4\sqrt{x+1}}\)
<=> \(x^2+1=2x+2+2\sqrt{2x+2+4\sqrt{x+1}}-2x\)
<=> \(x^2+1=2\sqrt{2x+2+4\sqrt{x+1}}+2\)
<=> \(x^2+1-2=2\sqrt{2x+2+4\sqrt{x+1}}\)
<=> \(x^2-1=2\sqrt{2x+2+4\sqrt{x+1}}\)
<=> \(\left(x^2-1\right)^2=\left(2\sqrt{2x+2+4\sqrt{x+1}}\right)^2\)
<=> \(x^4-2x^2+1=8x+8+16\sqrt{x+1}\)
<=> \(x^4-2x^2+1-8x=16\sqrt{x+1}+8\)
<=> \(x^4-2x^2-8x-7=16\sqrt{x+1}\)
<=> \(\left(x^4-2x^2-8x-7\right)^2=\left(16\sqrt{x+1}\right)^2\)
<=> \(x^8-4x^6-16x^5-10x^4+32x^3+92x^2+112x+49=256x+256\)
<=> \(x^8-4x^6-16x^5-10x^4+32x^3+92x^2+112x-144x-207=0\)
<=> \(\left(x+1\right)\left(x-2\right)\left(x^6+2x^5+3x^4-4x^3-9x^2+2x+69\right)=0\)
<=> \(\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}}\)<=> \(\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)
Vì: \(x^6+2x^5+3x^4-4x^3-9x^2+2x+69\ne0\)
=> \(\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)
a, ĐKXĐ: \(x\ge0\)
\(pt\Leftrightarrow5\sqrt{x}-10-x+2\sqrt{x}=4-x\)
\(\Leftrightarrow7\sqrt{x}=14\)
\(\Leftrightarrow x=4\left(tm\right)\)
\(\Rightarrow\) phương trình có nghiệm \(x=4\)
b, ĐKXĐ: \(x\ge2\)
\(pt\Leftrightarrow\frac{x+5}{x+4}=\frac{x-2}{x+3}\)
\(\Leftrightarrow\left(x+5\right)\left(x+3\right)=\left(x+4\right)\left(x-2\right)\)
\(\Leftrightarrow x^2+8x+15=x^2+2x-8\)
\(\Leftrightarrow x=-\frac{23}{6}\left(l\right)\)
\(\Rightarrow\) vô nghiệm
c, ĐKXĐ: \(x\in R\)
\(pt\Leftrightarrow\frac{x-\sqrt{x^2+1}+x+\sqrt{x^2+1}}{\left(x+\sqrt{x^2+1}\right)\left(x-\sqrt{x^2+1}\right)}=4\)
\(\Leftrightarrow-2x=4\)
\(\Leftrightarrow x=-2\left(tm\right)\)
\(\Rightarrow\) phương trinh có nghiệm \(x=-2\)
1.a) \(\sqrt{x^2-4}-\sqrt{x-2}=0\)
\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}-\sqrt{x-2}=0\)
\(\Leftrightarrow\sqrt{x-2}.\sqrt{x+2}-\sqrt{x-2}=0\)
\(\Leftrightarrow\sqrt{x-2}.\left(\sqrt{x+2}-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-2}=0\\\sqrt{x+2}-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\\sqrt{x+2}=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x+2=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
Vậy x=2 hoặc x=-1
\(\sqrt{x+2\sqrt{x-1}=2}\)
\(\Leftrightarrow\sqrt{x-1+2.\sqrt{x-1}.\sqrt{1}+1}=2\)
\(\Leftrightarrow\sqrt{\left(x-1+1\right)^2}=2\)
\(\Leftrightarrow\sqrt{x^2}=2\)
\(\Leftrightarrow x=2\)
Các câu kia lm tương tự........
1) ĐẶT \(\sqrt{x^2+1993}=y\)
==> \(1993=y^2-x^2\)
khi đó pt trở thành \(x^4+y=y^2-x^2\)
<=> \(\left(x^4-y^2\right)+\left(x^2+y\right)=0\)
<=> \(\left(x^2+y\right)\left(x^2-y\right)+\left(x^2+y\right)=0\)
<=> \(\left(x^2+y\right)\left(x^2-y+1\right)=0\)
đến đây bạn giải nốt nhé
còn câu 2 thì liên hợp mẫu như bài trên mk làm