Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1.2}{1.1}.\dfrac{2.3}{2.2}.\dfrac{3.4}{3.3}.\dfrac{4.5}{4.4}...\dfrac{10.11}{10.10}\left(x-2\right)=-20x+40\)
\(\Leftrightarrow\dfrac{2.3.4...11}{1.2.3...10}\left(x-2\right)=-20x+40\)
\(\Leftrightarrow11\left(x-2\right)=-20x+40\)
\(\Leftrightarrow11x-22=-20x+40\)
\(\Leftrightarrow31x=62\)
\(\Rightarrow x=2\)
\(=>\dfrac{2\cdot1}{1\cdot1}\cdot\dfrac{2\cdot3}{2\cdot2}\cdot\dfrac{3\cdot4}{3\cdot3}\cdot......\cdot\dfrac{10\cdot11}{10\cdot10}\cdot\left(x-2\right)=-20\left(x+1\right)+60\)=>11*(x-2)=-20*(x+1)+60
=>11x-22=-20x-20+60
=>31x=62
=>x=2
\(a,2\left(5x+1\right)-7\left(3x-2\right)=4\left(2x-1\right)+3\left(2-x\right)\)
\(\Leftrightarrow10x+2-21x+14=8x-4+6-3x\)
\(\Leftrightarrow-16x=-14\)
\(\Rightarrow x=\dfrac{7}{8}\)
\(b,-4\left(\dfrac{1}{2}x-3\right)+\dfrac{7}{2}\left(2x-1\right)+x=5x\left(1-x\right)\)
\(\Leftrightarrow-2x+12+7x-\dfrac{7}{2}+x=5x-5x^2\)
\(\Leftrightarrow5x^2+x+\dfrac{17}{2}=0\)
Cái này không biết tách kiểu gì cho vừa nên bạn nhấn máy tính nhé
Mode 5 3 rồi lần lượt điền vào theo thứ tự trên thì
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{10}+\dfrac{13i}{10}\\x=-\dfrac{1}{10}-\dfrac{13i}{10}\end{matrix}\right.\)
\(a,\left(2x+1\right)^2-3x^2+4=\left(1-x\right)\left(1+x\right)\)
\(\Leftrightarrow4x^2+4x+1-3x^2+4=1-x^2\)
\(\Leftrightarrow4x^2+4x+1-3x^2+4-1+x^2=0\)
\(\Leftrightarrow2x^2+4x+4=0\)
\(\Leftrightarrow2\left(x^2+2x+1\right)+2=0\)
\(\Leftrightarrow2\left(x+1\right)^2=-2\)
\(\Leftrightarrow\left(x+1\right)^2=-1\Rightarrow\) pt vô nghiệm
\(b,\left(4x-3\right)\left(4x+3\right)-2\left(x+2\right)^2=14x^2\)
\(\Leftrightarrow16x^2-9-2\left(x^2+4x+4\right)-14x^2=0\)
\(\Leftrightarrow16x^2-9-2x^2-8x-8-14x^2=0\)
\(\Leftrightarrow-8x-17=0\)
\(\Leftrightarrow-8x=17\)
\(\Leftrightarrow x=\dfrac{-17}{8}\)
\(c,\left(2x-1\right)\left(x+1\right)-x^2+1=\dfrac{1}{2}\left(x-1\right)^2\)
\(\Leftrightarrow2x^2+2x-x-1-x^2+1=\dfrac{1}{2}\left(x^2-2x+1\right)\)
\(\Leftrightarrow2x^2+2x-x-1-x^2+1-\dfrac{1}{2}x^2+x-\dfrac{1}{2}=0\)\(\Leftrightarrow\dfrac{1}{2}x^2+2x-\dfrac{1}{2}=0\)
\(\Leftrightarrow\dfrac{1}{2}\left(x^2+4x+4\right)-\dfrac{5}{2}=0\)
\(\Leftrightarrow\dfrac{1}{2}\left(x+2\right)^2=\dfrac{5}{2}\)
\(\Rightarrow\left(x+2\right)^2=5\)
\(\Rightarrow\left[{}\begin{matrix}x+2=-\sqrt{5}\\x+2=\sqrt{5}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\sqrt{5}-2\\x=\sqrt{5}-2\end{matrix}\right.\)
a) \(\left(2x+1\right)^2-3x^2+4=\left(1-x\right)\left(1+x\right)\)
\(\Leftrightarrow4x^2+4x+1-3x^2+4=1-x^2\)
\(\Leftrightarrow4x^2+4x+1-3x^2+4-1+x^2=0\)
\(\Leftrightarrow2x^2+4x+4=0\Leftrightarrow\left(\sqrt{2}x\right)^2+2.\sqrt{2}.\sqrt{2}x+\left(\sqrt{2}\right)^2+2=0\) \(\Leftrightarrow\left(\sqrt{2}x+\sqrt{2}\right)^2+2=0\)
ta có : \(\left(\sqrt{2}x+\sqrt{2}\right)^2\ge0\Rightarrow\left(\sqrt{2}x+\sqrt{2}\right)^2+2\ge2>0\forall x\)
\(\Rightarrow\) phương trình vô nghiệm
vậy phương trình vô nghiệm
b) \(\left(4x-3\right)\left(4x+3\right)-2\left(x+2\right)^2=14x^2\)
\(\Leftrightarrow16x^2-9-2\left(x^2+4x+4\right)=14x^2\)
\(\Leftrightarrow16x^2-9-2x^2-8x-8=14x^2\)
\(\Leftrightarrow16x^2-9-2x^2-8x-8-14x^2=0\)
\(\Leftrightarrow-8x-17=0\Leftrightarrow-8x=17\Leftrightarrow x=\dfrac{-17}{8}\)
vậy \(x=\dfrac{-17}{8}\)
c) \(\left(2x-1\right)\left(x+1\right)-x^2+1=\dfrac{1}{2}\left(x-1\right)^2\)
\(\Leftrightarrow2x^2+2x-x-1-x^2+1=\dfrac{1}{2}\left(x^2-2x+1\right)\)
\(\Leftrightarrow2x^2+2x-x-1-x^2+1=\dfrac{1}{2}x^2-x+\dfrac{1}{2}\)
\(\Leftrightarrow2x^2+2x-x-1-x^2+1-\dfrac{1}{2}x^2+x-\dfrac{1}{2}=0\)
\(\Leftrightarrow\dfrac{1}{2}x^2+2x-\dfrac{1}{2}=0\Leftrightarrow\left(\dfrac{\sqrt{2}}{2}x\right)^2+2.\sqrt{2}.\dfrac{\sqrt{2}}{2}x+\left(\sqrt{2}\right)^2-\dfrac{5}{2}=0\)
\(\Leftrightarrow\left(\dfrac{\sqrt{2}}{2}x+\sqrt{2}\right)^2-\dfrac{5}{2}=0\Leftrightarrow\left(\dfrac{\sqrt{2}}{2}x+\sqrt{2}\right)^2=\dfrac{5}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{\sqrt{2}}{2}x+\sqrt{2}=\sqrt{\dfrac{5}{2}}\\\dfrac{\sqrt{2}}{2}x+\sqrt{2}=-\sqrt{\dfrac{5}{2}}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{\sqrt{2}}{2}x=\sqrt{\dfrac{5}{2}}-\sqrt{2}=\dfrac{\sqrt{10}-2\sqrt{2}}{2}\\\dfrac{\sqrt{2}}{2}x=-\sqrt{\dfrac{5}{2}}-\sqrt{2}=-\dfrac{\sqrt{10}+2\sqrt{2}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-2+\sqrt{5}\\x=-2-\sqrt{5}\end{matrix}\right.\)
vậy \(x=-2+\sqrt{5};x=-2-\sqrt{5}\)
pt nào cho thì mới biết chứ bạn