\(\dfrac{12}{1-9x^2}=\dfrac{1-3x}{1+3x}-\dfrac{1+3x}{1-3x}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2018

DK: x≠ 1/3,-1/3

pt<=> \(\dfrac{12}{\left(1-3x\right)\left(1+3x\right)}=\dfrac{\left(1-3x\right)^2}{\left(1-3x\right)\left(1+x\right)}-\dfrac{\left(1+3x\right)^2}{\left(1-3x\right)\left(1+3x\right)}\)

=> 12=(1-3x)2-(1+3x)2=(1-3x-1-3x)(1-3x+1+3x)

=(-6x).2=-12x

=> x=-1

2 tháng 2 2018

\(\text{Đ}KX\text{Đ}:\left[{}\begin{matrix}1-9x^2\ne0\\1+3x\ne0\\1-3x\ne0\end{matrix}\right.=>\left[{}\begin{matrix}x\ne\dfrac{-1}{3}\\x\ne\dfrac{1}{3}\end{matrix}\right.\)

\(\dfrac{12}{1-9x^2}=\dfrac{1-3x}{1+3x}-\dfrac{1+3x}{1-3x}\left(1\right)\)

\(\left(1\right)=>\dfrac{12}{\left(1-3x\right)\left(1+3x\right)}-\dfrac{\left(1-3x\right)\left(1-3x\right)}{\left(1-3x\right)\left(1+3x\right)}+\dfrac{\left(1+3x\right)\left(1+3x\right)}{\left(1-3x\right)\left(1+3x\right)}=0\)\(< =>12-\left(1-3x-3x+9x^2\right)+\left(1+3x+3x+9x^2\right)=0\)

\(< =>12-1+3x+3x-9x^2+1+3x+3x+9x^2=0\)

<=>12x+12=0

<=>12x=-12

<=>x=-1(nhận)

\(S=\left\{-1\right\}\)

18 tháng 4 2017

1.

\(\dfrac{7x-3}{x-1}=\dfrac{2}{3}\left(ĐKXĐ:x\ne1\right)\\ \Leftrightarrow3\left(7x-3\right)=2\left(x-1\right)\\ \Leftrightarrow21x-9=2x-2\\ \Leftrightarrow19x=7\\ \Leftrightarrow x=\dfrac{7}{19}\left(TMĐK\right)\)

2.

\(\dfrac{5x-1}{3x+2}=\dfrac{5x-7}{3x-1}\left(ĐKXĐ:x\ne-\dfrac{2}{3};x\ne\dfrac{1}{3}\right)\\ \Leftrightarrow\left(5x-1\right)\left(3x-1\right)=\left(5x-7\right)\left(3x+2\right)\\ \Leftrightarrow15x^2-5x-3x+1=15x^2+10x-21x-14\\ \Leftrightarrow-8x+1=-11x-14\\ \Leftrightarrow3x=-15\\ \Leftrightarrow x=-5\left(TMĐK\right)\)

3.

\(\dfrac{1-x}{x+1}+3=\dfrac{2x+3}{x+1}\left(ĐKXĐ:x\ne-1\right)\\ \Leftrightarrow\left(\dfrac{1-x}{x+1}+3\right)\left(x+1\right)=2x+3\\ \Leftrightarrow\dfrac{1-x+3\left(x+1\right)}{x+1}.\left(x+1\right)=2x+3\\ \Leftrightarrow\dfrac{4+2x}{x+1}\left(x+1\right)=2x+3\\ \Leftrightarrow4+2x=2x+3\\ \Leftrightarrow4=3\)

Vô nghiệm.

23 tháng 2 2019

Câu 1:

Hỏi đáp Toán

23 tháng 2 2019

Câu 2:

ĐKXĐ: \(\left[{}\begin{matrix}1-9x^2\ne0\\1+3x\ne0\\1-3x\ne0\end{matrix}\right.\Rightarrow \left[{}\begin{matrix}x\ne\dfrac{-1}{3}\\x\ne\dfrac{1}{3}\end{matrix}\right.\)

\(\dfrac{12}{1-9x^2}=\dfrac{1-3x}{1+3x}-\dfrac{1+3x}{1-3x}\left(1\right)\)

\(\left(1\right):\dfrac{12}{\left(1-3x\right)\left(1+3x\right)}-\dfrac{\left(1-3x\right)\left(1-3x\right)}{\left(1-3x\right)\left(1+3x\right)}+\dfrac{\left(1+3x\right)\left(1+3x\right)}{\left(1-3x\right)\left(1+3x\right)}=0\)

\(\Leftrightarrow 12-\left(1-3x-3x+9x^2\right)+\left(1+3x+3x+9x^2\right)=0\)

\(\Leftrightarrow 12-1+3x+3x-9x^2+1+3x+3x+9x^2=0\)

\(\Leftrightarrow12x+12=0\\ \Leftrightarrow12x=-12\\ \Leftrightarrow x=-1\left(TM\right)\)

Vậy \(S=\left\{-1\right\}\)

20 tháng 4 2017

1/

Ta có: 6x4 -x3-7x2+x+1=0

<=> 6x4-6x3+5x3-5x2-2x2+2x-x+1=0

<=> 6x3(x-1)+5x2(x-1)-2x(x-1)-(x-1)=0

<=> (x-1) ( 6x3+5x2-2x-1)=0

<=> ( x-1) ( 6x3-3x2+8x2-4x+2x-1)=0

<=> (x-1)\(\left[3x^2\left(2x-1\right)+4x\left(2x-1\right)+\left(2x-1\right)\right]\)=0

<=> (x-1) ( 2x-1) ( 3x2+4x+1)=0

<=> (x-1) ( 2x-1) (3x2+3x+x+1)=0

<=> (x-1) (2x-1) \(\left[3x\left(x+1\right)+\left(x+1\right)\right]\)=0

<=> (x-1)(2x-1)(x+1)(3x+1)=0

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\2x-1=0\\x+1=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\2x=1\\x=-1\\3x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{2}\\x=-1\\x=\dfrac{-1}{3}\end{matrix}\right.\)

vậy \(S=\left\{\pm1;\dfrac{1}{2};\dfrac{-1}{3}\right\}\)

1 tháng 1 2019

\(6x^4-x^3-7x^2+x+1=0\)

\(\Leftrightarrow6x^4-6x^3+5x^3-5x^2-2x^2+2x-x+1=0\)

\(\Leftrightarrow6x^3\left(x-1\right)+5x^2\left(x-1\right)-2x\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(6x^3+5x^2-2x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(6x^3+6x^2-x^2-x-x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[6x^2\left(x+1\right)-x\left(x+1\right)-\left(x+1\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(6x^2-x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(6x^2-3x+2x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(2x-1\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\\2x-1=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=\dfrac{1}{2}\\x=-\dfrac{1}{3}\end{matrix}\right.\)

22 tháng 7 2017

a) \(\left(\dfrac{3x}{1-3x}+\dfrac{2x}{3x+1}\right):\dfrac{6x^2+10x}{9x^2-6x+1}\)

\(=-\dfrac{9x^2+3x+2x-6x^2}{\left(3x-1\right)\left(3x+1\right)}.\dfrac{\left(3x-1\right)^2}{2x\left(3x+5\right)}\)

\(=-\dfrac{x\left(3x+5\right)}{\left(3x-1\right)^2}.\dfrac{\left(3x-1\right)^2}{2x\left(3x+5\right)}\)

\(=\dfrac{-1}{2}\)

b) \(\left(\dfrac{9}{x^3-9x}+\dfrac{1}{x+3}\right):\left(\dfrac{x-3}{x^2+3x}-\dfrac{x}{3x+9}\right)\)

\(=\left(\dfrac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}\right):\left(\dfrac{3x-9-x^2}{3x\left(x+3\right)}\right)\)

\(=\dfrac{x^2-3x+9}{x\left(x-3\right)\left(x+3\right)}.\dfrac{3x\left(x+3\right)}{-x^2+3x-9}\)

\(=\dfrac{x^2-3x+9}{x-3}.\dfrac{3}{-\left(x^2-3x+9\right)}\)

\(=-\dfrac{3}{x-3}\)

18 tháng 4 2017

a) ĐKXĐ: \(x\ne-1,x\ne0\)

Ta có: \(\dfrac{x+3}{x+1}+\dfrac{x-2}{x}=2\)

<=> \(\dfrac{x\left(x+3\right)+\left(x-2\right)\left(x+1\right)-2x\left(x+1\right)}{x\left(x+1\right)}=0\)

<=> \(\dfrac{x^2+3x+x^2-x-2-2x^2-2x}{x\left(x+1\right)}=0\)

<=> \(\dfrac{-2}{x\left(x+1\right)}=0\) (vô lí)

=> pt vô nghiệm

b) ĐKXĐ: \(x\ne3,x\ne-2\)

ta có:\(1+\dfrac{x}{3-x}=\dfrac{5x}{\left(x+2\right)\left(3-x\right)}+\dfrac{2}{x+2}\)

<=> \(\dfrac{\left(x+2\right)\left(3-x\right)+x\left(x+2\right)-5x-2\left(3-x\right)}{\left(x+2\right)\left(3-x\right)}=0\)

<=> \(\dfrac{x-x^2+6+x^2+2x-5x-6+2x}{\left(x+2\right)\left(3-x\right)}=0\)

<=> \(\dfrac{0}{\left(x+2\right)\left(3-x\right)}=0\) (luôn đúng)

Vậy pt trên luôn đúng với mọi x khác 3 và -2

18 tháng 4 2017

a) \(\dfrac{x+3}{x+1}\)+\(\dfrac{x-2}{x}\)=2

(đk: x\(\ne\); x\(\ne\)-1)

<=> \(x^2\)+3x + \(x^2\)-x -2 =\(2x^2\)+2x

<=> 2x -2 =2x

<=>0x=2

=>Pt vô nghiệm.

b) 1+ \(\dfrac{x}{3-x}\)= \(\dfrac{5x}{\left(x+2\right)\left(3-x\right)}\)+\(\dfrac{2}{x+2}\)

(đk:x\(\ne\)3; x\(\ne\)-2)

<=> 3x +6=3x+6

<=>0x=0

=> Pt vô số no.

c)\(\dfrac{3x+2}{3x-2}\)-\(\dfrac{6}{2+3x}\)=\(\dfrac{9x^2}{9x^2-4}\)

(đk: x\(\ne\)\(\pm\)\(\dfrac{2}{3}\))

<=>\((3x+2)^2\)-6(3x-2)=\(9x^2\)

<=>\(9x^2 \)+12x +4 -18x+12=\(9x^2\)

<=>16-6x=0

<=>6x=16

<=> x=\(\dfrac{8}{3}\)(t/m)

Vậy pt có no duy nhất là x=\(\dfrac{8}{3}\)

1 tháng 1 2019

\(\dfrac{2x-1}{3x^2+7x+2}+\dfrac{3}{9x^2+15x+4}-\dfrac{2x+7}{3x^2-5x-12}=\dfrac{5}{x+2}\)

\(\Leftrightarrow\dfrac{2x-1}{\left(3x+1\right)\left(x+2\right)}+\dfrac{3}{\left(3x+1\right)\left(3x+4\right)}-\dfrac{2x+7}{\left(4x+3\right)\left(x-3\right)}=\dfrac{5}{x+2}\)

\(\Leftrightarrow\dfrac{1}{x+2}-\dfrac{1}{3x+1}+\dfrac{1}{3x+1}-\dfrac{1}{3x+4}+\dfrac{1}{3x+4}-\dfrac{1}{x-3}=\dfrac{5}{x+2}\)

\(\Leftrightarrow\dfrac{1}{x+2}-\dfrac{1}{x-3}=\dfrac{5}{x+2}\)

\(\Leftrightarrow\dfrac{x-3-x-2}{\left(x+2\right)\left(x-3\right)}=\dfrac{5\left(x-3\right)}{\left(x+2\right)\left(x-3\right)}\)

\(\Leftrightarrow5x-3=-5\)

\(\Leftrightarrow x=-\dfrac{2}{5}\)

Vậy...

1 tháng 1 2019

tks bạn

17 tháng 7 2017

Nguyễn Huy Tú :v

17 tháng 7 2017

a,\(\dfrac{3}{x-3}\) - \(\dfrac{6x}{9-x^2}\) + \(\dfrac{x}{x+3}\) (*)

đkxđ: x khác 3, x khác -3

(*) \(\dfrac{3(x+3)}{\left(x-3\right).\left(x+3\right)}\)- \(\dfrac{6x}{\left(x-3\right).\left(x+3\right)}\) + \(\dfrac{x\left(x+3\right)}{\left(x-3\right).\left(x+3\right)}\)

=>3x+9 -6x + x2+3x

<=>x2 + 3x-6x+3x + 9

<=>x2 +9

<=>(x-3).(x+3)

25 tháng 2 2018

\(\dfrac{2x-8}{6}-\dfrac{3x+1}{4}=\dfrac{9x-2}{8}+\dfrac{3x-1}{12}\)

\(\Leftrightarrow4\left(2x-8\right)-6\left(3x+1\right)=3\left(9x-2\right)+2\left(3x-1\right)\)

\(\Leftrightarrow8x-32-18x-6=27x-6+6x-2\)

\(\Leftrightarrow8x-18x-27x-6x=-6-2+32+6\)

\(\Leftrightarrow-43x=30\)

\(\Leftrightarrow x=\dfrac{-30}{43}\)

\(\Rightarrow S=\left\{\dfrac{-30}{43}\right\}\)

20 tháng 2 2018

a)\(\dfrac{3x+2}{3x-2}-\dfrac{6}{2+3x}=\dfrac{9x^2}{9x^2-4}\left(ĐKXĐ:x\ne\pm\dfrac{2}{3}\right)\)

\(\Leftrightarrow\dfrac{3x+2}{3x-2}-\dfrac{6}{3x+2}=\dfrac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)

\(\Leftrightarrow\dfrac{\left(3x+2\right)^2-6\left(3x-2\right)}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)

\(\Rightarrow9x^2+12x+4-18x+12=9x^2\)

\(\Leftrightarrow9x^2-6x+16-9x^2=0\)

\(\Leftrightarrow-6x=-16\)

\(\Leftrightarrow x=\dfrac{8}{3}\) (thỏa mãn ĐKXĐ)

Vậy .................

20 tháng 2 2018

b) \(\dfrac{5-x}{4x^2-8x}+\dfrac{7}{8x}=\dfrac{x-1}{2x\left(x-2\right)}+\dfrac{1}{8x-16}\left(ĐKXĐ:x\ne0;x\ne2\right)\)

\(\Leftrightarrow\dfrac{5-x}{4x\left(x-2\right)}+\dfrac{7}{8x}=\dfrac{x-1}{2x\left(x-2\right)}+\dfrac{1}{8\left(x-2\right)}\)

\(\Leftrightarrow\dfrac{2\left(5-x\right)+7\left(x-2\right)}{8x\left(x-2\right)}=\dfrac{4\left(x-1\right)+x}{8x\left(x-2\right)}\)

\(\Rightarrow10-2x+7x-14=4x-4+x\)

\(\Leftrightarrow5x-4=5x-4\)

\(\Leftrightarrow0x=0\) (vô số nghiệm)

Vậy \(S=R\backslash\left\{0;2\right\}\)