Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(7=\sqrt{3x^2-2x+15}+\sqrt{3x^2-2x+8}=\frac{\left(3x^2-2x+15\right)-\left(3x^2-2x+8\right)}{\sqrt{3x^2-2x+15}-\sqrt{3x^2-2x+8}}\\ \)
\(=\frac{7}{a-b}\)=> a-b = 1 và a+b=7
=> dễ dàng tìm x
a) \(x^3+1=2\sqrt[3]{2x-1}\) (1)
Đặt \(\sqrt[3]{2x-1}=a\Rightarrow a^3=2x-1\)
\(\Rightarrow1=2x-a^3\)
Phương trình (1) khi đó trở thành :
\(x^3+2x-a^3=2a\)
\(\Leftrightarrow\left(x^3-a^3\right)+2\left(x-a\right)=0\)
\(\Leftrightarrow\left(x-a\right)\left(x^2+ax+a^2+2\right)=0\)
\(\Leftrightarrow x=a\)
Do đó : \(x=\sqrt[3]{2x-1}\Leftrightarrow x^3-2x+1=0\)
\(\Leftrightarrow\left(x-1\right).\left(x^2-x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{1\pm\sqrt{5}}{2}\end{cases}}\)
\(\sqrt{2x^2-4x+3}=\sqrt{2\left(x-1\right)^2+1}\);
\(\sqrt{3x^2-6x+7}=\sqrt{3\left(x-1\right)^2+4}\)
....
Ta có 2x2 - 4x + 3 = 2(x - 1)2 + 1\(\ge1\)
3x2 - 6x + 7 = 3(x - 1)2 + 4 \(\ge4\)
=> VT \(\ge3\)
Ta lại có 2 - x2 + 2x = 3 - (x - 1)2 \(\le3\)
=> VP \(\le0\)
Dấu = xảy ra khi x = 1
1 ĐKXD \(x\ge1\)
.\(2x^2+5x-1=7\sqrt{\left(x-1\right)\left(x^2+x+1\right)}\)
Đặt \(\sqrt{x-1}=a;\sqrt{x^2+x+1}=b\left(a,b\ge0\right)\)
=> \(2b^2+3a^2=2x^2+5x-1\)
=> \(2b^2+3a^2-7ab=0\)
<=> \(\orbr{\begin{cases}a=2b\\a=\frac{1}{3}b\end{cases}}\)
+ \(a=2b\)
=> \(2\sqrt{x^2+x+1}=\sqrt{x-1}\)
=> \(4x^2+3x+5=0\)vô nghiệm
+ \(a=\frac{1}{3}b\)
=> \(\sqrt{x^2+x+1}=3\sqrt{x-1}\)
=> \(x^2-8x+10=0\)
<=> \(\orbr{\begin{cases}x=4+\sqrt{6}\left(tmĐK\right)\\x=4-\sqrt{6}\left(kotmĐK\right)\end{cases}}\)
Vậy \(x=4+\sqrt{6}\)
ĐKXĐ:\(2x^2-1\ge0;x^2-3x-2\ge0;2x^2+2x+3\ge0;x^2-x+2\ge0\)
\(\sqrt{2x^2-1}+\sqrt{x^2-3x-2}=\sqrt{2x^2+2x+3}+\sqrt{x^2-x+2}\)
<=> \(\left(\sqrt{2x^2+2x+3}-\sqrt{2x^2-1}\right)+\left(\sqrt{x^2-x+2}-\sqrt{x^2-3x-2}\right)=0\)
\(\Leftrightarrow\frac{2x+4}{\sqrt{2x^2+2x+3}+\sqrt{2x^2-1}}+\frac{2x+4}{\sqrt{x^2-x+2}+\sqrt{x^2-3x-2}}=0\)
<=> \(\left(2x+4\right)\left(\frac{1}{\sqrt{2x^2+2x+3}+\sqrt{2x^2-1}}+\frac{1}{\sqrt{x^2-x+2}+\sqrt{x^2-3x-2}}\right)=0\)(1)
Vì \(\frac{1}{\sqrt{2x^2+2x+3}+\sqrt{2x^2-1}}+\frac{1}{\sqrt{x^2-x+2}+\sqrt{x^2-3x-2}}>0\)
nên pt(1) <=> \(2x+4=0\Leftrightarrow x=-2\)(tmđk)
Vậy x=-2
Em kiểm tra lại đề bài câu trên nhé
bÀI LÀM
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
a)\(pt\Leftrightarrow\sqrt{x^2+1}=\frac{2x^2-2x+2}{4x-1}\)
\(\Leftrightarrow x^2+1=\frac{4x^4-8x^3+12x^2-8x+4}{16x^2-8x+1}\)
\(\Leftrightarrow\left(x^2+1\right)\left(16x^2-8x+1\right)=4x^4-8x^3+12x^2-8x+4\)
\(\Leftrightarrow16x^4-8x^3+17x^2-8x+1=4x^4-8x^3+12x^2-8x+4\)
\(\Leftrightarrow\left(3x^2-1\right)\left(4x^2+3\right)=0\Rightarrow x=\frac{1}{\sqrt{3}}\)
b)\(3\sqrt{x^3+8}=2\left(x^2-3x+2\right)\)
\(\Leftrightarrow3\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}=2\left(x^2-3x+2\right)\)
Đặt \(\hept{\begin{cases}\sqrt{x+2}=a\\\sqrt{x^2-2x+4}=b\end{cases}\left(a;b\ge0\right)}\) thì
\(\Rightarrow b^2-a^2=x^2-3x+2\)
Làm nốt
Đặt \(\left\{{}\begin{matrix}\sqrt{3x^2-2x+15}=a>0\\\sqrt{3x^2-2x+8}=b>0\end{matrix}\right.\) \(\Rightarrow a^2-b^2=7\)
Pt trở thành:
\(a+b=a^2-b^2\)
\(\Leftrightarrow a+b=\left(a-b\right)\left(a+b\right)\)
\(\Rightarrow a-b=1\Rightarrow a=b+1\)
\(\Rightarrow\sqrt{3x^2-2x+15}=\sqrt{3x^2-2x+8}+1\)
\(\Leftrightarrow3x^2-2x+15=3x^2-2x+9+2\sqrt{3x^2-2x+8}\)
\(\Leftrightarrow\sqrt{3x^2-2x+8}=3\)
\(\Leftrightarrow3x^2-2x-1=0\Rightarrow\left[{}\begin{matrix}x=1\\x=-\frac{1}{3}\end{matrix}\right.\)