Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+3x+3+x^2-x-1-2x^2+2x+1=1\)
\(\Leftrightarrow4x+2=0\Leftrightarrow x=-\dfrac{1}{2}\)
a, x3-3x2+3x-1=0 b, (2x-5)2-(x+2)2=0 c, x2-x=3x-3
<=>x3-x2-2x2+2x+x-1=0 <=>(2x-5-x-2)(2x-5+x+2)=0 <=>x2-x-3x+3=0
<=>(x3-x2)-(2x2-2x)+(x-1)=0 <=>(x-7)(3x-3)=0 <=>x2-4x+3=0
<=>x2(x-1)-2x(x-1)+(x-1)=0 <=>x-7=0 hoặc 3x-3=0 <=>x2-x-3x+3=0
<=>(x-1)(x2-2x+1)=0 1, x-7=0 2, 3x-3=0 <=>(x2-x)-(3x-3)=0
<=>(x-1)(x-1)2=0 <=>x=7 <=>x=1 <=>x(x-1)-3(x-1)=0
<=>x-1=0 Vậy TN của PT là S={7;1} <=>(x-1)(x-3)=0
<=>x=1 <=>x-1=0 hoặc x-3=0
Vậy tập nghiệm của phương trình là S={1} 1, x-1=0 2, x-3=0
<=>x=1 <=>x=3
Vậy TN của PT là S={1;3}
a/ \(\left(x^5+x^4+x^3\right)+\left(x^2+x+1\right)=0\)
\(\Leftrightarrow x^3\left(x^2+x+1\right)+\left(x^2+x+1\right)=0\)
\(\Leftrightarrow\left(x^2+x+1\right)\left(x^3+1\right)=0\)
Do \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)
Nên \(x^3+1=0\Leftrightarrow x=-1\)
Mặc dù có những đứa tk sai dạo nhưng t vx làm.
Bài này hướng dẫn thôi,tự trình bày lại phần phân tích đa thức thành nhân tử.
b) \(x^5-x^4+3x^3+3x^2-x+1=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^4-2x^3+5x^2-2x+1\right)=0\)
Suy ra x + 1 = 0 tức là x = -1 hoặc:\(x^4-2x^3+5x^2-2x+1=0\)
\(\Leftrightarrow\left(x^4-2x^3+x^2\right)+\left(4x^2-2x+1\right)=0\)
Mà \(VT=x^2\left(x-1\right)^2+4\left(x-\frac{1}{4}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\) (vô nghiệm)
Vậy một nghiệm x = -1
a) \(x^3-3x^2+4=0\)
\(\Leftrightarrow\left(x-2\right)^2.\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
b) \(\left(2x^2-3x-1\right)^2-3\left(2x^2-3x-5\right)-16=0\)
\(\Leftrightarrow4x^4-12x^3+7x^2+3x=0\)
\(\Leftrightarrow x\left(2x-3\right)\left(2x^2-3x-1\right)=0\)
\(\Leftrightarrow2x-3=0\)
\(\Leftrightarrow2x=0+3\)
\(\Leftrightarrow2x=3\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}\)
a) \(x^3-3x^2+4=0\)
\(\Leftrightarrow\)\(x^3+x^2-4x^2-4x+4x+4=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(x-2\right)^2=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
Vậy....
(3x-2)2-(x-3)3=(2x+1)3
<=> (3x-2)2-(x-3)3=(2x+1)3
<=> (3x-2)2=(2x+1)3+(x-3)3
từ đây bạn chỉ cần áp dụng hằng đẳng thức đáng nhớ để tính
\(\left(3x-2\right)^2-\left(x-3\right)^3=\left(2x+1\right)^3\)
\(\Leftrightarrow\left(3x-2\right)^2=\left(x-3\right)^3+\left(2x+1\right)^3\)
\(\Leftrightarrow\left(3x-2\right)^2=\left(3x-2\right)\left(3x^2+3x+13\right)\)
\(\Leftrightarrow3x-2=3x^2+3x+13\)
\(\Leftrightarrow3x^2+15=0\)
\(\Leftrightarrow3x^2=-15\)
\(\Leftrightarrow x^2=-5\)
Mà \(x^2\ge0\) nên pt vô nghiệm