Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. ĐKXĐ: $\xgeq \frac{-6}{5}$
PT \(\Leftrightarrow [\sqrt{2x^2+5x+7}-(x+3)]+[(x+2)-\sqrt{5x+6}]+(x^2-x-2)=0\)
\(\Leftrightarrow \frac{x^2-x-2}{\sqrt{2x^2+5x+7}+x+3}+\frac{x^2-x-2}{x+2+\sqrt{5x+6}}+(x^2-x-2)=0\)
\(\Leftrightarrow (x^2-x-2)\left(\frac{1}{\sqrt{2x^2+5x+7}+x+3}+\frac{1}{x+2+\sqrt{5x+6}}+1\right)=0\)
Với $x\geq \frac{-6}{5}$, dễ thấy biểu thức trong ngoặc lớn hơn hơn $0$
Do đó: $x^2-x-2=0$
$\Leftrightarrow (x+1)(x-2)=0$
$\Leftrightarrow x=-1$ hoặc $x=2$ (đều thỏa mãn)
Bài 2: Tham khảo tại đây:
Giải pt \(\sqrt{2x+1} - \sqrt[3]{x+4} = 2x^2 -5x -11\) - Hoc24
Đang làm dở dang mà tự nhiên máy thoát ra. Chép lại oải ghê.
Câu 1: Mình làm mẫu câu a thôi nhé.
a/ \(x^2-2\sqrt{3}x-6=0\)
( a = 1 ; b = -2\(\sqrt{3}\); c = -6 )
\(\Delta=b^2-4ac\)
\(=\left(-2\sqrt{3}\right)^2-4.1.\left(-6\right)\)
\(=36>0\)
\(\sqrt{\Delta}=\sqrt{36}=6\)
Pt có 2 nghiệm phân biệt:
\(x_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{2\sqrt{3}-6}{2.1}=-3+\sqrt{3}\)
\(x_2=\frac{-b+\sqrt{\Delta}}{2a}=\frac{2\sqrt{3}+6}{2.1}=3+\sqrt{3}\)
Vậy:..
Câu 2: \(x^2-2\left(2m+1\right)x+4m^2+2=0\)
( a = 1; b = -2(2m+1); c = 4m^2 + 2 )
\(\Delta=b^2-4ac\)
\(=\left[-2\left(2m+1\right)\right]^2-4.1.\left(4m^2+2\right)\)
\(=4\left(4m^2+4m+1\right)-16m^2-8\)
\(=16m^2+16m+4-16m^2-8\)
\(=16m-4\)
Để pt có 2 nghiệm phân biệt \(\Leftrightarrow\Delta>0\Leftrightarrow16m-4>0\Leftrightarrow m>\frac{1}{4}\)
1)\(x^2-3x+1+\sqrt{2x-1}=0\)
ĐK:\(x\ge\frac{1}{2}\)
\(\Leftrightarrow x^2-3x+2+\sqrt{2x-1}-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)+\frac{2x-1-1}{\sqrt{2x-1}+1}=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)+\frac{2\left(x-1\right)}{\sqrt{2x-1}+1}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\left(x-2\right)+\frac{2}{\sqrt{2x-1}+1}\right)=0\)
Suy ra x=1 và pt trong ngoặc chuyển vế bình phương lên đưuọc \(x=-\sqrt{2}+2\)
2)\(\left(x+1\right)\sqrt{x^2-2x+3}=x^2+1\) (bình phương luôn cũng được nhưng cơ bản là mình ko thích :| )
\(pt\Leftrightarrow\sqrt{x^2-2x+3}=\frac{x^2+1}{x+1}\)
\(\Leftrightarrow\sqrt{x^2-2x+3}-2=\frac{x^2+1}{x+1}-2\)
\(\Leftrightarrow\frac{x^2-2x+3-4}{\sqrt{x^2-2x+3}+2}=\frac{x^2-2x-1}{x+1}\)
\(\Leftrightarrow\frac{x^2-2x-1}{\sqrt{x^2-2x+3}+2}-\frac{x^2-2x-1}{x+1}=0\)
\(\Leftrightarrow\left(x^2-2x-1\right)\left(\frac{1}{\sqrt{x^2-2x+3}+2}-\frac{1}{x+1}\right)=0\)
Pt \(\frac{1}{\sqrt{x^2-2x+3}+2}=\frac{1}{x+1}\Leftrightarrow\sqrt{x^2-2x+3}=x-1\)
\(\Leftrightarrow x^2-2x+3=x^2-2x+1\Leftrightarrow3=1\) (loại)
\(\Rightarrow x^2-2x-1=0\Rightarrow x=\frac{2\pm\sqrt{8}}{2}\)
a/ \(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
b/ \(\Delta=9+8=17\)
Phương trình có 2 nghiệm pb: \(\left\{{}\begin{matrix}x_1=\frac{3-\sqrt{17}}{4}\\x_2=\frac{3+\sqrt{17}}{4}\end{matrix}\right.\)
c/ \(\Delta=\left(2+\sqrt{3}\right)^2-8\sqrt{3}=\left(2-\sqrt{3}\right)^2\)
Phương trình có 2 nghiệm pb:
\(\left\{{}\begin{matrix}x_1=\frac{2+\sqrt{3}+2-\sqrt{3}}{2}=2\\x_2=\frac{2+\sqrt{3}-\left(2-\sqrt{3}\right)}{2}=\sqrt{3}\end{matrix}\right.\)
d/ \(\Delta=\left(2m-1\right)^2-4\left(m^2+m\right)=1\)
Phương trình có 2 nghiệm pb:
\(\left\{{}\begin{matrix}x_1=\frac{2m+1+1}{2}=m+1\\x_2=\frac{2m+1-1}{2}=m\end{matrix}\right.\)
1.
\(\text{ĐK: }x\ge\frac{1}{2}\)
\(pt\Leftrightarrow\left(x^2+1\right)\left(x-\sqrt{2x-1}\right)+\)\(\left(x-\sqrt[3]{2x^2-x}\right)=0\)
\(\Leftrightarrow\left(x^2+1\right).\frac{x^2-\left(2x-1\right)}{x+\sqrt{2x-1}}+\frac{x^3-\left(2x^2-x\right)}{x^2+Ax+A^2}=0\text{ }\left(A=\sqrt[3]{2x^2-x}\right)\)
\(\Leftrightarrow\left(x-1\right)^2\left[\frac{x^2+1}{x+\sqrt{2x-1}}+\frac{2x}{x^2+A^2+\left(x+A\right)^2}\right]=0\)
\(\Leftrightarrow x=1\text{ }\left(do\text{ }....................................................>0\right)\)