Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham Khảo nào
a) Điều kiện: x + 2 ≠ 0 và x – 2 ≠ 0 ⇔ x ≠ ± 2
(Khi đó: x2 – 4 = (x + 2)(x – 2) ≠ 0)
Vậy tập nghiệm của pt là: S = {-1; 1}
b) Điều kiện: 2x ≥ 0 ⇔ x ≥ 0
Khi đó: |x – 5| = 2x ⇔ x – 5 = 2x hoặc x – 5 = -2x
⇔ x = -5 hoặc x = 5/3
Vì x ≥ 0 nên ta lấy x = 5/3 . Tập nghiệm : S = {5/3}
c) x – 2)2 + 2(x – 1) ≤ x2 + 4
⇔ x2 – 4x + 4 + 2x – 2 ≤ x2 + 4
⇔ -2x ≤ 2
⇔ x ≥ -1
Tập nghiệm S = {x | x ≥ -1}
\(\frac{9}{x^2-4}=\frac{x-1}{x+2}+\frac{3}{x-2}\)
\(ĐKXĐ:x\ne\pm2\)
\(pt\Leftrightarrow\frac{9}{x^2-4}=\frac{x^2-3x+2}{x^2-4}+\frac{3x+6}{x^2-4}\)
\(\Leftrightarrow\frac{9}{x^2-4}=\frac{x^2+8}{x^2-4}\)
\(\Leftrightarrow x^2+8=9\Leftrightarrow x=\pm1\left(tm\right)\)
Vậy pt có 2 nghiệm là 1 và -1
Điều kện : \(x+2\ne0\) và \(x-2\ne0\Leftrightarrow x=\pm2\)
( Khi đó \(x^2-4=\left(x+2\right)\left(x-2\right)\ne0\) )
\(\frac{9}{x^2-4}=\frac{x-1}{x+2}+\frac{3}{x-2}\)
\(\Leftrightarrow\frac{9}{\left(x-2\right)\left(x+2\right)}=\frac{\left(x-1\right)\left(x-2\right)+3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(\Rightarrow x^2-3x+2+3x+6=9\Leftrightarrow x^2=1\Leftrightarrow x=\pm1\)
Vậy tập nghiệm của PT là: \(S=\left\{-1;1\right\}\)
Chúc bạn học tốt !!!
a) Điều kiện: x + 2 ≠ 0 và x – 2 ≠ 0 ⇔ x ≠ ± 2
(Khi đó: x2 – 4 = (x + 2)(x – 2) ≠ 0)
Vậy tập nghiệm của pt là: S = {-1; 1}
b) Điều kiện: 2x ≥ 0 ⇔ x ≥ 0
Khi đó: |x – 5| = 2x ⇔ x – 5 = 2x hoặc x – 5 = -2x
⇔ x = -5 hoặc x = 5/3
Vì x ≥ 0 nên ta lấy x = 5/3 . Tập nghiệm : S = {5/3}
c) x – 2)2 + 2(x – 1) ≤ x2 + 4
⇔ x2 – 4x + 4 + 2x – 2 ≤ x2 + 4
⇔ -2x ≤ 2
⇔ x ≥ -1
Tập nghiệm S = {x | x ≥ -1}
Ta lập bảng xét dấu :
x | -1 | 0 | |||
x+1 | - | 0 | + | / | + |
x | - | / | - | 0 | + |
+) Nếu x < -1 thì / x / = -x
/ x+1 / = -x-1
\(pt\Leftrightarrow2\left(-x\right)-\left(-x-1\right)=2\)
\(\Leftrightarrow-2x+x+1=2\)
\(\Leftrightarrow-x=1\)
\(\Leftrightarrow x=-1\) ( loại )
+) Nếu \(-1\le x\le0\) thì / x+1 / = x+1
/ x / = -x
\(pt\Leftrightarrow2\left(-x\right)-\left(x+1\right)=2\)
\(\Leftrightarrow-2x-x-1=2\)
\(\Leftrightarrow-3x=3\)
\(\Leftrightarrow x=-1\left(tm\right)\)
+) Nếu x > 0 thì / x / = x
/ x+1 / = x+1
\(pt\Leftrightarrow2x-\left(x+1\right)=2\)
\(\Leftrightarrow2x-x-1=2\)
\(\Leftrightarrow x=3\left(tm\right)\)
a, \(\frac{9}{x^2-4}=\frac{x-1}{x+2}+\frac{3}{x-2}\left(ĐKXĐ:x\ne\pm2\right)\)
\(\frac{9}{\left(x-2\right)\left(x+2\right)}=\frac{x-1}{x+2}+\frac{3}{x-2}\)
\(\frac{9}{\left(x-2\right)\left(x+2\right)}=\frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
Khử mẫu : \(9=\left(x-1\right)\left(x-2\right)+3\left(x+2\right)\)
Đến đây nhường bn, rất dễ =))
b, \(\frac{1}{x-5}-\frac{3}{x^2-6x+5}=\frac{5}{x-1}\)
\(\frac{1}{x-5}-\frac{3}{\left(x-5\right)\left(x-1\right)}=\frac{5}{\left(x-1\right)}\)
\(\frac{\left(x-1\right)}{x-5}-\frac{3}{\left(x-5\right)\left(x-1\right)}=\frac{5\left(x-5\right)}{\left(x-1\right)\left(x-5\right)}\)
Khử mẫu \(x-1-3=5\left(x-5\right)\)
Tự lm nốt mà cho mk hỏi, đề bài có bpt mà bpt đâu
\(\frac{9}{x^2-4}=\frac{x-1}{x+2}+\frac{3}{x-2}\left(ĐKXĐ:x\ne2;-2\right)\)
\(< =>\frac{9}{x^2-2^2}=\frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(< =>\frac{9}{\left(x-2\right)\left(x+2\right)}=\frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{3x+6}{\left(x+2\right)\left(x-2\right)}\)
\(< =>9=x^2-2x-x+2+3x+6\)
\(< =>x^2-\left(2x+x-3x\right)+\left(2+6-9\right)=0\)
\(< =>x^2-2=0\)\(< =>x^2=2\)
\(< =>x=\pm\sqrt{2}\left(tmđk\right)\)
Vậy tập nghiệm của phương trình trên là \(\pm\sqrt{2}\)
\(x^2-2x+1< 9\)
\(\Leftrightarrow\left(x-1\right)^2< 9\)
\(\Leftrightarrow x-1< 3\)
\(\Leftrightarrow x< 4\)
\(\left(x-1\right)\left(4-x^2\right)\ge0\)
\(\Leftrightarrow\left(x-1\right)\left(2-x\right)\left(2+x\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2-x=0\\2+x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-2\end{matrix}\right.\)
\(\dfrac{x+2}{x-5}< 0\)
\(\Leftrightarrow x+2< 0\)
\(\Leftrightarrow x< -2\)
a)\(x^2-2x+1< 9\)
\(\Leftrightarrow\left(x-1\right)^2< 9\)
\(\Leftrightarrow\left(x-1\right)^2-9< 0\)
\(\Leftrightarrow\left(x-1-3\right)\left(x-1+3\right)< 0\)
\(\Leftrightarrow\left(x-4\right)\left(x+2\right)< 0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4< 0\\x+2>0\end{matrix}\right.hay\left[{}\begin{matrix}x-4>0\\x+2< 0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x< 4\\x>-2\end{matrix}\right.hay\left[{}\begin{matrix}x>4\\x< -2\end{matrix}\right.\)(vô lý)
-Vậy nghiệm của BĐT là \(-2< x< 4\).
b) \(\left(x-1\right)\left(4-x^2\right)\ge0\)
\(\Leftrightarrow\left(x-1\right)\left(2-x\right)\left(x+2\right)\ge0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x+2\right)\le0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1< 0\\x-2>0\\x+2>0\end{matrix}\right.\) hay \(\left[{}\begin{matrix}x-1>0\\x-2< 0\\x+2>0\end{matrix}\right.\) hay \(\left[{}\begin{matrix}x-1>0\\x-2 >0\\x+2< 0\end{matrix}\right.\) hay \(\left[{}\begin{matrix}x-1< 0\\x-2< 0\\x+2< 0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x< 1\\x>2\\x>-2\end{matrix}\right.\) (vô lí) hay \(\left[{}\begin{matrix}x>1\\x< 2\\x>-2\end{matrix}\right.\) (có thể xảy ra) hay
\(\left[{}\begin{matrix}x>1\\x>2\\x< -2\end{matrix}\right.\) (vô lí) hay \(\left[{}\begin{matrix}x< 1\\x< 2\\x< -2\end{matrix}\right.\) (có thể xảy ra)
-Vậy nghiệm của BĐT là \(x< -2\) hay \(1< x< 2\).
c) ĐKXĐ: \(x\ne5\)
\(\dfrac{x+2}{x-5}< 0\Leftrightarrow\left[{}\begin{matrix}x+2< 0\\x-5>0\end{matrix}\right.hay\left[{}\begin{matrix}x+2>0\\x-5< 0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x< -2\\x>5\end{matrix}\right.\)(vô lí) hay
\(\left[{}\begin{matrix}x>-2\\x< 5\end{matrix}\right.\) (có thể xảy ra)
-Vậy nghiệm của BĐT là \(-2< x< 5\)
a) \(\left(x^2+2\right)^2-\left(x+2\right)\left(x-2\right)\left(x^2+4\right)-4x\left(x+1\right)\le20\)
\(\Leftrightarrow x^4+4x^2+4-x^4+16-4x^2-4x\le20\)
\(\Leftrightarrow\left(x^4-x^4\right)+\left(4x^2-4x^2\right)-4x+4+16\le20\)
\(\Leftrightarrow-4x+20\le20\)
\(\Leftrightarrow-4x\le20-20\)
\(\Leftrightarrow-4x\le0\)
\(\Leftrightarrow-4x:-4\ge0:-4\)
\(\Leftrightarrow x\ge0\)
Vậy nghiệm của bất phương trình là: \(x\ge0\)
b) \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)\ge15\)
\(\Leftrightarrow x^3+8-x^3-2x\ge15\)
\(\Leftrightarrow\left(x^3-x^3\right)+8-2x\ge15\)
\(\Leftrightarrow8-2x\ge15\)
\(\Leftrightarrow-2x\ge15-8\)
\(\Leftrightarrow-2x\ge7\)
\(\Leftrightarrow-2x:-2\le7:-2\)
\(\Leftrightarrow x\le-\dfrac{7}{2}\)
Vậy nghiệm của bất phương trình là \(x\le-\dfrac{7}{2}\)
a: =>x^4+4x^2+4-x^4+16-4x^2-4x<=20
=>-4x+20<=20
=>-4x<=0
=>x>=0
b: =>x^3+8-x^3-2x>=15
=>-2x>=7
=>x<=-7/2
\(\Leftrightarrow x^2-4x+4+2x^2-4x+2-x^2< =4\)
=>-8x<=-2
hay x>=1/4