\(\sqrt{x^2-2x+2}=\frac{1+\sqrt{4m^2-4m-7}}{2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2015

ĐK: \(x^2-2x+2=\left(x-1\right)^2+1\ge0\text{ (đúng với mọi }x\in R\text{ )};\text{ }4m^2-4m-7\ge0\)

Ta có: \(VT=\sqrt{\left(x-1\right)^2+1}\ge1\)

+Nếu \(\frac{1+\sqrt{4m^2-4m-7}}{2}<1\Leftrightarrow\sqrt{4m^2-4m-7}<1\) thì \(VT\ge0>VP\) => pt vô nghiệm.

+Xét \(\frac{1+\sqrt{4m^2-4m-7}}{2}\ge1\Leftrightarrow\sqrt{4m^2-4m-7}\ge1\Leftrightarrow4m^2-4m-7\ge1\)

\(\Leftrightarrow4\left(m+1\right)\left(m-2\right)\ge0\)\(\Leftrightarrow m\le-1\text{ hoặc }m\ge2\)

\(pt\Leftrightarrow\left(x-1\right)^2=\left(\frac{1+\sqrt{4m^2-4m-7}}{2}\right)^2-1\)

\(\Leftrightarrow x=\sqrt{\left(\frac{1+\sqrt{4m^2-4m-7}}{2}\right)^2-1}+1\)hoặc \(x=-\sqrt{\left(\frac{1+\sqrt{4m^2-4m-7}}{2}\right)^2-1}+1\)

Kết luận: ............................................

13 tháng 7 2021

Ta có: \(\Delta=\left[-\left(m+3\right)\right]^2-4\left(4m-4\right)=m^2+6m+9-16m+16=\left(m-5\right)^2\ge0\)

=> pt luôn có 2 nghiệm x1, x2

=> \(x_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{m+3-m+5}{2}=4\)

  \(x_2=\frac{-b+\sqrt{\Delta}}{2a}=\frac{m+3+m-5}{2}=m-1\)

Theo bài ra, ta có: \(\sqrt{x_1}+\sqrt{x_2}+x_1x_2=20\)

ĐK: \(x_1\ge0\)\(x_2\ge0\) <=> 4  \(\ge\) 0 và m - 1 \(\ge\)0 <=> m \(\ge\)1

<=> \(\sqrt{4}+\sqrt{m-1}+4\left(m-1\right)=20\)

<=> \(\sqrt{m-1}=22-4m\left(m\le\frac{11}{2}\right)\)

<=> \(m-1=16m^2-176m+484\)

<=> \(16m^2-177m+485=0\)

<=> \(16m^2-80m-97m+485=0\)

<=> \(\left(m-5\right)\left(16m-97\right)=0\)

<=> \(\orbr{\begin{cases}m=5\left(tm\right)\\m=\frac{97}{16}\left(ktm\right)\end{cases}}\)

Vậy ...

2 tháng 10 2017

\(\sqrt{\frac{m}{1-2x+x^2}}.\sqrt{\frac{4m-8mx+4mx^2}{81}}=\sqrt{\frac{m}{\left(x-1\right)^2}}.\sqrt{\frac{4m\left(1-2x+x^2\right)}{81}}\)

\(=\sqrt{\frac{m}{\left(x-1\right)^2}}.\sqrt{\frac{4m\left(x-1\right)^2}{81}}=\frac{\sqrt{m}}{\left|x-1\right|}.\frac{2\sqrt{m}.\left|x-1\right|}{9}=\frac{2m}{9}\)

\(x\ne1\) chứ không phải x>1 nên không thể ghi |x-1|=x-1 nhé Despacito

2 tháng 10 2017

A..mk vua nghi ra bai nay

\(\sqrt{\frac{m}{x^2-2x+1}}.\sqrt{\frac{4m-8mx+4mx^2}{81}}\)

\(=\sqrt{\frac{m}{\left(x-1\right)^2}}.\sqrt{\frac{4m\left(1-2x+x^2\right)}{81}}\)

\(=\frac{\sqrt{m}}{\left|x-1\right|}.\frac{\sqrt{4m\left(x-1\right)^2}}{9}\) ( Thoa man DKXD \(m>0;x\ne1\)

\(=\frac{\sqrt{m}}{x-1}.\frac{2\left(x-1\right).\sqrt{m}}{9}\)

\(=\frac{2m}{9}\)

ko biet co dung ko nua 

30 tháng 3 2020

\(\sqrt{\sqrt{2}-1-x}+\sqrt[4]{x}=\frac{1}{\sqrt[4]{2}}\)

ĐKXĐ: Tự tìm nhé.

\(\left(\sqrt{\sqrt{2}-1-x};\sqrt[4]{x}\right)\rightarrow\left(b;a\right)\)

Phương trình <=>  \(\hept{\begin{cases}a+b=\frac{1}{\sqrt[4]{2}}\\a^4+b^2=\sqrt{2}-1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}b=\frac{1}{\sqrt[4]{2}}-a\\a^4+b^2=\sqrt{2}-1\left(2\right)\end{cases}}\)

(2) <=> \(a^4+a^2-\frac{2}{\sqrt[4]{2}}a+\frac{1}{\sqrt{2}}-\sqrt{2}+1=0\)

\(\Leftrightarrow\sqrt{2}a^4+\sqrt{2}a^2-2\sqrt[4]{2}a+\sqrt{2}-1=0\)

\(\Leftrightarrow\left(a^2-a+\frac{\sqrt{2}-\sqrt[4]{2}}{\sqrt{2}}\right)\left(\sqrt{2}a^2+\sqrt{2}a+2\sqrt{2}+\sqrt[4]{2}-\sqrt{2}\right)=0\)

\(\Leftrightarrow a^2-a+\frac{\sqrt{2}-\sqrt[4]{2}}{\sqrt{2}}=0\)( vì \(\Leftrightarrow\sqrt{2}a^2+\sqrt{2}a+2\sqrt{2}+\sqrt[4]{2}-\sqrt{2}>0\))

Tự làm tiếp nhé

30 tháng 3 2020

ĐK: \(x\ge\frac{1}{2}\)

\(\sqrt{\frac{x+7}{x+1}}+8=2x^2+\sqrt{2x-1}\)

\(\Leftrightarrow\left(\sqrt{\frac{x+7}{x+1}}-\sqrt{3}\right)+2\left(2-x\right)\left(2+x\right)=\left(\sqrt{2x-1}-\sqrt{3}\right)\)

\(\Leftrightarrow\frac{2\left(2-x\right)}{\sqrt{\left(x+7\right)\left(x+1\right)}+\sqrt{3}\left(x+1\right)}+2\left(2-x\right)\left(2+x\right)=\frac{2\left(x-2\right)}{\sqrt{2x-1}+\sqrt{3}}\)

\(\Leftrightarrow\frac{2\left(2-x\right)}{\sqrt{\left(x+7\right)\left(x+1\right)}+\sqrt{3}\left(x+1\right)}+2\left(2-x\right)\left(2+x\right)+\frac{2\left(2-x\right)}{\sqrt{2x-1}+\sqrt{3}}=0\)

\(\Leftrightarrow\left(2-x\right)\left[\frac{2}{\sqrt{\left(x+7\right)\left(x+1\right)}+\sqrt{3}\left(x+1\right)}+2\sqrt{2+x}+\frac{2}{\sqrt{2x-1}+\sqrt{3}}\right]=0\)

\(\Leftrightarrow x=2\)\(\frac{2}{\sqrt{\left(x+7\right)\left(x+1\right)}+\sqrt{3}\left(x+1\right)}+2\left(2+x\right)+\frac{2}{\sqrt{2x-1}+\sqrt{3}}>0\))

KL:...

30 tháng 6 2019

\(M=\sqrt{\frac{m}{1-2x+x^2}}\times\sqrt{\frac{4m-8mx+4mx^2}{81}}\)

\(=\frac{\sqrt{m}}{\sqrt{1-2x+x^2}}\times\frac{\sqrt{4m\times\left(1-2x+x^2\right)}}{\sqrt{81}}\)

\(=\frac{\sqrt{m}}{\sqrt{1-2x+x^2}}\times\frac{\sqrt{4m}\times\sqrt{1-2x+x^2}}{9}\)

\(=\frac{\sqrt{m}\times\sqrt{4m}}{9}\)

\(=\frac{2m}{9}\)

vậy . . .

18 tháng 11 2020

\(M=\sqrt{\frac{m}{1-2x+x^2}}.\sqrt{\frac{4m-8mx+4mx^2}{81}}\)

     \(=\sqrt{\frac{m}{\left(1-x\right)^2}}.\sqrt{\frac{4m\left(1-2x+x^2\right)}{81}}\)

     \(=\sqrt{\frac{m}{\left(1-x\right)^2}.\frac{4m\left(1-x\right)^2}{81}}\)

     \(=\frac{\sqrt{4m^2}}{81}\)

     \(=\frac{\sqrt{4m^2}}{\sqrt{81}}=\frac{2m}{9}\)

Vậy : \(M=\frac{2m}{9}\)