K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2022

Đặt \(\sqrt{x-1}=a;\sqrt{x+1}=b\) \(\left(a;b\ge0;x\ge1\right)\)

\(\sqrt{\left(x-1\right)\left(x+1\right)}=\sqrt{x+1}+\sqrt{x-1}-x+4\)

<=> ab = a + b - x + 4

<=> 2ab = 2(a + b) - 2x + 8

<=> 2ab = 2(a + b) - a2 - b2 + 8

<=> (a + b)2 - 2(a + b) + 1 = 9

<=> (a + b - 1)2 = 9

<=> \(\orbr{\begin{cases}a+b=4\\a+b=-2\end{cases}}\Leftrightarrow a+b=4\)

\(\Leftrightarrow\sqrt{x+1}+\sqrt{x-1}=4\)

\(\Leftrightarrow\sqrt{x+1}=4-\sqrt{x-1}\)

\(\Leftrightarrow\hept{\begin{cases}x+1=x-1-8\sqrt{x-1}+16\\1\le x\le17\end{cases}}\Leftrightarrow\hept{\begin{cases}4\sqrt{x-1}=7\\1\le x\le17\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}16\left(x-1\right)=49\\1\le x\le17\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{65}{16}\\1\le x\le17\end{cases}}\Leftrightarrow x=\frac{65}{16}\left(tm\right)\)

24 tháng 9 2016

1) đặt đk rùi bình phương 2 vế là ok

2) \(pt\Leftrightarrow\frac{\sqrt{x}-\sqrt{x+2}}{x-x-2}+\frac{\sqrt{x+2}-\sqrt{x+4}}{x+2-x-4}+\frac{\sqrt{x+4}-\sqrt{x+6}}{x+4-x-6}=\frac{\sqrt{10}}{2}-1\)(ĐKXĐ : \(x\ge0\))

<=> \(\frac{\sqrt{x}-\sqrt{x+6}}{-2}=\frac{\sqrt{10}}{2}-1\)

<=> \(\frac{\sqrt{x+6}-\sqrt{x}}{2}=\frac{\sqrt{10}-2}{2}\)

<=> \(\sqrt{x+6}-\sqrt{x}=\sqrt{10}-2\)

<=> \(\sqrt{x+6}+2=\sqrt{10}+\sqrt{x}\)

đến đây bình phương 2 vế rùi giải bình thường nhé 

Bài khá dễ , đợi t triệu hồi người chết :

Kuchiyose edo tensei

2 tháng 9 2018

chúa chỉ gợi ý \(\sqrt{x^2+x+1}-\sqrt{13}-\sqrt{x^2+4}+\sqrt{13}=\sqrt{x^2+2}-\sqrt{11}-\sqrt{x^2+x-1}+\sqrt{11}\)

\(\frac{\left(x^2+x-12\right)}{x^2+x+14}-\frac{\left(x^2-9\right)}{\left(x^2+17\right)}=\frac{\left(x^2-9\right)}{\left(x^2+13\right)}-\frac{\left(x^2+x-12\right)}{\left(x^2+x+10\right)}\)  liên hợp

đến đây thấy nhân tử chung và m có thể tự làm

8 tháng 2 2017

hình như là \(\sqrt{x^3+x^2+x+1}\)

10 tháng 2 2017

Câu này bị đăng nhầm tận 2 lần nhé b. B xem bài giải ở câu trên nhé.

9 tháng 2 2017

Sửa đề: \(\sqrt{x-1}+\sqrt{x^3+x^2+x+1}=1+\sqrt{x^4-1}\)

Đặt \(\hept{\begin{cases}\sqrt{x-1}=a\left(a\ge0\right)\\\sqrt{x^3+x^2+x+1}=b\left(b\ge0\right)\end{cases}}\)

\(\Leftrightarrow a+b=1+ab\)

\(\Leftrightarrow\left(a-1\right)+\left(b-ab\right)=0\)

\(\Leftrightarrow\left(a-1\right)\left(1-b\right)=0\)

Với a = 1 thì 

\(\Rightarrow\sqrt{x-1}=1\)

\(\Rightarrow x=2\)

 Với b = 1 thì

\(\sqrt{x^3+x^2+x+1}=1\)

\(\Leftrightarrow x=0\)(loại)

Vậy PT có nghiệm duy nhất là x = 2

11 tháng 2 2017

= tôi không biết