Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK\(\hept{\begin{cases}x^2-8x+5\ge0\\x^2+2x-15\ge0\\4x^2-18x+18\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}\orbr{\begin{cases}x\ge5\\x\le3\end{cases}}\\\orbr{\begin{cases}x\ge3\\x\le-5\end{cases}}\\\orbr{\begin{cases}x\ge3\\x\le\frac{3}{2}\end{cases}}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x\le-5\\x\ge5\end{cases}hoặc}~x=3\)
a) ĐK: \(x\ge-15\)
\(8x^2+16x-20-\sqrt{x+15}=0\)
<=> \(8x^2+16x-20=\sqrt{x+15}\)
=> \(64x^4+256x^2+400+256x^3-640x-320x^2=x+15\)
<=> \(64x^4+256x^3-64x^2-641x+385=0\)
<=> \(4x^2\left(16x^2+36x-35\right)+7x\left(16x^2+36x-35\right)-11\left(16x^2-36x-35\right)=0\)
<=> \(\left(16x^2+36x-35\right)\left(4x^2+7x-11\right)=0\)
<=> \(\orbr{\begin{cases}16x^2+36x-35=0\\4x^2+7x-11=0\end{cases}}\)
+) TH1: \(16x^2+36x-35=0\Leftrightarrow x=\frac{-9\pm\sqrt{221}}{8}\)( tmđk)
+) TH2: \(4x^2+7x-11=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{11}{4}\end{cases}}\)(tmđk)
THử từng nghiệm vào bài toán ban đầu ta chỉ 2 nghiệm x = 1 và \(x=\frac{-9-\sqrt{221}}{8}\)là đúng
Vậy phương trình có hai nghiệm:....
\(\sqrt{x+5}+\sqrt{3-x}-2\left(\sqrt{15-2x-x^2}+1\right)=0\) (ĐKXĐ: \(-5\le x\le3\))
Đặt \(\hept{\begin{cases}\sqrt{x+5}=a\\\sqrt{3-x}=b\end{cases}\left(a;b\ge0\right)\Rightarrow ab=\sqrt{\left(x+5\right)\left(3-x\right)}=\sqrt{15-2x-x^2}}\)
Đồng thời: \(\Rightarrow a^2+b^2=8\)
Khi đó; ta có hệ pt : \(\hept{\begin{cases}a^2+b^2=8\\a+b-2\left(ab+1\right)=0\end{cases}\Leftrightarrow}\hept{\begin{cases}\left(a+b\right)^2=8+2ab\left(1\right)\\a+b=2\left(ab+1\right)\left(2\right)\end{cases}}\)
Thế (2) vào (1); ta được: \(4\left(ab+1\right)^2=8+2ab\). Đặt ab=c
Suy ra: \(4\left(c+1\right)^2=8+2c\Leftrightarrow2\left(c^2+2c+1\right)=4+c\)
\(\Leftrightarrow2c^2+3c-2=0\Leftrightarrow2c^2+4c-\left(c+2\right)=0\)
\(\Leftrightarrow2c\left(c+2\right)-\left(c+2\right)=0\Leftrightarrow\left(c+2\right)\left(2c-1\right)=0\Leftrightarrow\orbr{\begin{cases}c=-2\\c=\frac{1}{2}\end{cases}}\)
*) Với c = -2 => ab = -2; thay vào (2) thì có: \(a+b=-2\)(loại vì \(a;b\ge0\))
*) Với c = 1/2 => ab = 1/2; thay vào (2) thì có; \(a+b=3\)
Ta có: \(\left(a-b\right)^2=a^2+b^2-2ab=8-2.\frac{1}{2}=7\Rightarrow a-b=\pm\sqrt{7}\)
+) Nếu \(\hept{\begin{cases}a+b=3\\a-b=\sqrt{7}\end{cases}\Rightarrow}a=\frac{3+\sqrt{7}}{2}\Rightarrow\sqrt{x+5}=\frac{3+\sqrt{7}}{2}\Leftrightarrow x=\frac{3\sqrt{7}-2}{2}\)(t/m ĐKXĐ)
+) Nếu \(\hept{\begin{cases}a+b=3\\a-b=-\sqrt{7}\end{cases}\Rightarrow}a=\frac{3-\sqrt{7}}{2}\Rightarrow\sqrt{x+5}=\frac{3-\sqrt{7}}{2}\Leftrightarrow x=-\frac{2+3\sqrt{7}}{2}\)(t/m ĐKXĐ)
Vậy tập nghiệm của pt cho là \(S=\left\{\frac{3\sqrt{7}-2}{2};-\frac{2+3\sqrt{7}}{2}\right\}.\)
\(pt\Leftrightarrow\left(x-3\right)^2-7\left(x-3\right)-4\sqrt{x-3}+20=0\)
\(a=\sqrt{x-3}\ge0\)
\(pt\rightarrow a^4-7a^2-4a+20=0\)
\(\Leftrightarrow\left(a-2\right)^2\left(a^2+4a+5\right)=0\)
\(\Leftrightarrow\left(a-2\right)\left[\left(a+2\right)^2+1\right]=0\)
\(\Leftrightarrow a=2\)
\(\Rightarrow x=a^2+3=7\)