K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2020

ĐKXĐ: \(\hept{\begin{cases}x^2-5x+2\ge0\\2x-1>0\\x-2\ge0\end{cases}\Leftrightarrow x\ge2}\)

Phương trình 

\(\Leftrightarrow\sqrt{x-2}\sqrt{2x-1}-x\sqrt{x-2}+3x-x^2-3\sqrt{2x-1}+x\sqrt{2x-1}=0\)

\(\Leftrightarrow\left(\sqrt{2x-1}-x\right)\left(\sqrt{x-2}-3+x\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{2x-1}=x\\\sqrt{x-2}=3-x\end{cases}}\)

<=> 2x-1=x2 hoặc \(\hept{\begin{cases}3-x\ge0\\x-2=3-x^2\end{cases}}\)

<=> x2-2x+1=0 hoặc \(\hept{\begin{cases}x\le3\\x^2-7x+11=0\end{cases}}\)

<=> x=1 hoặc \(\hept{\begin{cases}x\le3\\x=\frac{7\pm\sqrt{3}}{2}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{7-\sqrt{5}}{2}\end{cases}}\)

Đối chiếu điều kiện x>=2 => x=\(=\frac{7-\sqrt{5}}{2}\left(tm\right)\)

Vậy pt có nghiệm \(x=\frac{7-\sqrt{5}}{2}\)

5 tháng 5 2020

đề bài có sai ko vậy

5 tháng 2 2020

\(TXĐ:D=R\)

\(pt\Leftrightarrow\sqrt{\left(2x-1\right)^2+1^2}+\sqrt{\left(\sqrt{3}x+1\right)^2+\left(x+1\right)^2}\)

\(+\sqrt{\left(\sqrt{3}x-1\right)^2+\left(x+1\right)^2}=3\sqrt{2}\left(1\right)\)

Chọn \(\hept{\begin{cases}\overrightarrow{u}=\left(1;1-2x\right)\\\overrightarrow{v}=\left(\sqrt{3}x+1;x+1\right)\\\overrightarrow{w}=\left(1-\sqrt{3}x;x+1\right)\end{cases}}\)\(\Rightarrow\overrightarrow{u}+\overrightarrow{v}+\overrightarrow{w}=\left(3;3\right)\)

\(\Rightarrow\left|\overrightarrow{u}+\overrightarrow{v}+\overrightarrow{w}\right|=3\sqrt{2}\)(2)

Ta có: \(\left|\overrightarrow{u}+\overrightarrow{v}+\overrightarrow{w}\right|\le\left|\overrightarrow{u}\right|+\left|\overrightarrow{v}\right|+\left|\overrightarrow{w}\right|\)

\(\Leftrightarrow\sqrt{\left(2x-1\right)^2+1^2}+\sqrt{\left(\sqrt{3}x+1\right)^2+\left(x+1\right)^2}\)

\(+\sqrt{\left(\sqrt{3}x-1\right)^2+\left(x+1\right)^2}\ge3\sqrt{2}\)

Dấu "=" xảy ra khi \(\overrightarrow{u};\overrightarrow{v};\overrightarrow{w}\)cùng hướng

Từ (1) và (2) suy ra  \(\overrightarrow{u};\overrightarrow{v};\overrightarrow{w}\)cùng hướng

\(\Leftrightarrow\exists k,l>0\hept{\begin{cases}\overrightarrow{v}=k.\overrightarrow{u}\\\overrightarrow{v}=l.\overrightarrow{w}\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{3}x+1=k.1;x+1=k\left(1-2x\right)\\\sqrt{3}x+1=l\left(1-\sqrt{3}x\right);x+1=l\left(x+1\right)\end{cases}}\)

Vậy x = 0

15 tháng 2 2017

\(\frac{2x-5}{!x-3!}+1>0\Leftrightarrow\frac{2x-5+!x-3!}{!x-3}>0\)

do !x-3!>0 mọi x khác 3=> Bất phương trình tương đương

\(2x-5+!x-3!>0\Leftrightarrow!x-3!>5-2x\)

TH(1) x<3 <=>3-x>5-2x=> x>2

Kết luận(1) \(2< x< 3\)

TH(2) \(x\ge3\Leftrightarrow x-3>5-2x\Rightarrow3x>8\Rightarrow x>\frac{8}{3}\)

Kết luận(2) \(x\ge3\)

(1)và(2) nghiệm của Bpt là: x>2

NV
16 tháng 2 2020

1/ Đặt \(\sqrt[3]{x^2+5x-2}=t\Rightarrow x^2+5x=t^3+2\)

\(t^3+2=2t-2\)

\(\Leftrightarrow t^3-2t+4=0\)

\(\Leftrightarrow\left(t+2\right)\left(t^2-2t+2\right)=0\)

\(\Rightarrow t=-2\)

\(\Rightarrow\sqrt[3]{x^2+5x-2}=-2\)

\(\Leftrightarrow x^2+5x-2=-8\)

\(\Leftrightarrow x^2+5x+6=0\Rightarrow\left[{}\begin{matrix}x=-2\\x=-3\end{matrix}\right.\)

NV
16 tháng 2 2020

2/ \(\Leftrightarrow2x+11+3\sqrt[3]{\left(x+5\right)\left(x+6\right)}\left(\sqrt[3]{x+5}+\sqrt[3]{x+6}\right)=2x+11\)

\(\Leftrightarrow\sqrt[3]{\left(x+5\right)\left(x+6\right)}\left(\sqrt[3]{x+5}+\sqrt[3]{x+6}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt[3]{x+5}=0\\\sqrt[3]{x+6}=0\\\sqrt[3]{x+5}=-\sqrt[3]{x+6}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-6\\x+5=-x-6\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-5\\x=-6\\x=-\frac{11}{2}\end{matrix}\right.\)

20 tháng 3 2019

b)\(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\)

\(\Rightarrow\left(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}\right)^2=\left(3\left(x+y\right)\right)^2\)

\(\Leftrightarrow\sqrt{\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)}=x^2+7xy+y^2\)

\(\Rightarrow\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)=\left(x^2+7xy+y^2\right)^2\)

\(\Leftrightarrow9\left(x-y\right)^2\left(x+y\right)^2=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-y\end{matrix}\right.\)

\(\rightarrow\left(x;y\right)\in\left\{\left(0;0\right),\left(1;1\right)\right\}\)

20 tháng 3 2019

caau a) binh phuong len ra no x=y tuong tu