Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\text{Đ}K\text{X}\text{Đ}:\frac{3}{2}\le x\le\frac{5}{2}\)
Áp dụng BĐT Bunhiacopxki ta có:
\(VT=\sqrt{2x-3}+\sqrt{5-2x}\le\sqrt{2\left(2x-3+5-2x\right)}=2\)
Dấu '=' xảy ra khi \(\sqrt{2x-3}=\sqrt{5-2x}\Leftrightarrow x=2\)
Lại có: \(VP=3x^2-12x+14=3\left(x-2\right)^2+2\ge2\)
Dấu '=' xảy ra khi x=2
Do đó VT=VP khi x=2
b) ĐK: \(x\ge0\). Ta thấy x=0 k pk là nghiệm của pt, chia 2 vế cho x ta có:
\(x^2-2x-x\sqrt{x}-2\sqrt{x}+4=0\Leftrightarrow x-2-\sqrt{x}-\frac{2}{\sqrt{x}}+\frac{4}{x}=0\)
\(\Leftrightarrow\left(x+\frac{4}{x}\right)-\left(\sqrt{x}+\frac{2}{\sqrt{x}}\right)-2=0\)
Đặt \(\sqrt{x}+\frac{2}{\sqrt{x}}=t>0\Leftrightarrow t^2=x+4+\frac{4}{x}\Leftrightarrow x+\frac{4}{x}=t^2-4\), thay vào ta có:
\(\left(t^2-4\right)-t-2=0\Leftrightarrow t^2-t-6=0\Leftrightarrow\left(t-3\right)\left(t+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t=3\\t=-2\end{cases}}\)
Đối chiếu ĐK của t
\(\Rightarrow t=3\Leftrightarrow\sqrt{x}+\frac{2}{\sqrt{x}}=3\Leftrightarrow x-3\sqrt{x}+2=0\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=1\end{cases}}\)
ĐKXĐ: \(x\ge0\)
\(\Leftrightarrow2x+7+2\sqrt{x^2+7x}+\sqrt{x}+\sqrt{x+7}-42=0\)
Đặt \(\sqrt{x}+\sqrt{x+7}=t>0\)
\(\Rightarrow2x+7+2\sqrt{x^2+7x}=t^2\)
Pt trở thành:
\(t^2+t-42=0\Rightarrow\left[{}\begin{matrix}t=6\\t=-7\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x}+\sqrt{x+7}=6\)
\(\Leftrightarrow2x+7+2\sqrt{x^2+7x}=36\)
\(\Leftrightarrow2\sqrt{x^2+7x}=29-2x\) (\(x\le\frac{29}{2}\))
\(\Leftrightarrow4\left(x^2+7x\right)=\left(29-2x\right)^2\)
\(\Leftrightarrow144x-841=0\Rightarrow x=\frac{841}{144}\)