\(\sqrt{x}+\sqrt{x+1}=\frac{1}{\sqrt{x}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2022

\(\sqrt{x}+\sqrt{x+1}=\frac{1}{\sqrt{x}}\)

\(\Rightarrow\sqrt{x}\sqrt{x}+\sqrt{x+1}\sqrt{x}=\frac{1}{\sqrt{x}}\sqrt{x}\)

\(\Rightarrow\left(\sqrt{x}\right)^2+\sqrt{x}\sqrt{x+1}=1\)

\(\Rightarrow x^2+x=1-2x+x^2\)

\(\Rightarrow x=1-2x\)

\(\Rightarrow3x=1\)

\(\Rightarrow x=\frac{1}{3}\)

\(\Rightarrow S=\frac{1}{3}\)

Vậy nghiệm phương trình là \(\frac{1}{3}\)

18 tháng 1 2022

1 = 1 = 2

5 tháng 12 2016

Dk: x\(\ge0\)

lien hop

\(\Leftrightarrow\sqrt{x+3}-\sqrt{x}=1\)

\(\Leftrightarrow\sqrt{x+3}=2\Rightarrow x=1\)

7 tháng 12 2016

B​ạn có thể giải thích rõ hộ mình dc k???

22 tháng 9 2019

Phần sau cùng chỉ có 1 số \(\frac{1}{2}\)thui nha (lỗi kt)

22 tháng 9 2019

đề sai rồi bn

24 tháng 9 2016

1) đặt đk rùi bình phương 2 vế là ok

2) \(pt\Leftrightarrow\frac{\sqrt{x}-\sqrt{x+2}}{x-x-2}+\frac{\sqrt{x+2}-\sqrt{x+4}}{x+2-x-4}+\frac{\sqrt{x+4}-\sqrt{x+6}}{x+4-x-6}=\frac{\sqrt{10}}{2}-1\)(ĐKXĐ : \(x\ge0\))

<=> \(\frac{\sqrt{x}-\sqrt{x+6}}{-2}=\frac{\sqrt{10}}{2}-1\)

<=> \(\frac{\sqrt{x+6}-\sqrt{x}}{2}=\frac{\sqrt{10}-2}{2}\)

<=> \(\sqrt{x+6}-\sqrt{x}=\sqrt{10}-2\)

<=> \(\sqrt{x+6}+2=\sqrt{10}+\sqrt{x}\)

đến đây bình phương 2 vế rùi giải bình thường nhé 

30 tháng 7 2017

a)Đk:\(0\le x\le1\)

\(\sqrt{x}+\sqrt{1-x}+\sqrt{x+1}=2\)

\(pt\Leftrightarrow\sqrt{x}+\sqrt{1-x}-1+\sqrt{x+1}-1=0\)

\(\Leftrightarrow\sqrt{x}+\frac{1-x-1}{\sqrt{1-x}+1}+\frac{x+1-1}{\sqrt{x+1}-1}=0\)

\(\Leftrightarrow\frac{x}{\sqrt{x}}-\frac{x}{\sqrt{1-x}+1}+\frac{x}{\sqrt{x+1}-1}=0\)

\(\Leftrightarrow x\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{1-x}+1}+\frac{1}{\sqrt{x+1}-1}\right)=0\)

\(\Rightarrow x=0\)

b)\(\frac{3x+3}{\sqrt{x}}=4+\frac{x+1}{\sqrt{x^2-x+1}}\)

\(pt\Leftrightarrow\frac{3x+3}{\sqrt{x}}-6=\frac{x+1}{\sqrt{x^2-x+1}}-2\)

\(\Leftrightarrow\frac{3x+3-6\sqrt{x}}{\sqrt{x}}=\frac{x+1-2\sqrt{x^2-x+1}}{\sqrt{x^2-x+1}}\)

\(\Leftrightarrow\frac{\frac{\left(3x+3\right)^2-36x}{3x+3+6\sqrt{x}}}{\sqrt{x}}=\frac{\frac{\left(x+1\right)^2-4\left(x^2-x+1\right)}{x+1+2\sqrt{x^2-x+1}}}{\sqrt{x^2-x+1}}\)

\(\Leftrightarrow\frac{\frac{9x^2+18x+9-36x}{3x+3+6\sqrt{x}}}{\sqrt{x}}=\frac{\frac{x^2+2x+1-4x^2+4x-4}{x+1+2\sqrt{x^2-x+1}}}{\sqrt{x^2-x+1}}\)

\(\Leftrightarrow\frac{\frac{9x^2-18x+9}{3x+3+6\sqrt{x}}}{\sqrt{x}}-\frac{\frac{-3x^2+6x-3}{x+1+2\sqrt{x^2-x+1}}}{\sqrt{x^2-x+1}}=0\)

\(\Leftrightarrow\frac{\frac{9\left(x-1\right)^2}{3x+3+6\sqrt{x}}}{\sqrt{x}}+\frac{\frac{3\left(x-1\right)^2}{x+1+2\sqrt{x^2-x+1}}}{\sqrt{x^2-x+1}}=0\)

\(\Leftrightarrow3\left(x-1\right)^2\left(\frac{\frac{3}{3x+3+6\sqrt{x}}}{\sqrt{x}}+\frac{\frac{1}{x+1+2\sqrt{x^2-x+1}}}{\sqrt{x^2-x+1}}\right)=0\)

Dêx thấy: \(\frac{\frac{3}{3x+3+6\sqrt{x}}}{\sqrt{x}}+\frac{\frac{1}{x+1+2\sqrt{x^2-x+1}}}{\sqrt{x^2-x+1}}>0\forall....\)

\(\Rightarrow3\left(x-1\right)^2=0\Rightarrow x-1=0\Rightarrow x=1\)

2 tháng 11 2017

a ) x = 0 

b ) x = 1

k tui nha

thanks

17 tháng 8 2019

a.Vo nghiem

b.\(DK:x\ge0\)

\(\frac{\sqrt{x}-1}{\sqrt{x}+3}=\frac{\sqrt{x}-2}{\sqrt{x}+1}\)

\(\Leftrightarrow\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}=0\)

\(\Rightarrow x-1-x+\sqrt{x}+6=0\)

\(\Leftrightarrow x=5\left(n\right)\)

16 tháng 7 2019

\(\sqrt{x+2\sqrt{x-1}=2}\)

\(\Leftrightarrow\sqrt{x-1+2.\sqrt{x-1}.\sqrt{1}+1}=2\)

\(\Leftrightarrow\sqrt{\left(x-1+1\right)^2}=2\)

\(\Leftrightarrow\sqrt{x^2}=2\)

\(\Leftrightarrow x=2\)

Các câu kia lm tương tự........

17 tháng 1 2020

a/

Đặt \(\sqrt{1-x}=a\ge0\)

\(\Rightarrow\left(1-a\right)\sqrt[3]{1+a^2}=1-a^2\)

\(\Leftrightarrow\left(1-a\right)\left(\sqrt[3]{1+a^2}-1-a\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}1-a=0\left(1\right)\\\sqrt[3]{1+a^2}=1+a\left(2\right)\end{cases}}\)

\(\left(2\right)\Leftrightarrow1+a^2=1+a^3+3a^2+3a\)

\(\Leftrightarrow a^3+2a^2+3a=0\)

\(\Leftrightarrow a\left(a^2+2a+3\right)=0\)

17 tháng 1 2020

b/ Đạt

\(\hept{\begin{cases}\sqrt{x+\frac{1}{x}}=a\\x-\frac{1}{x}=b\end{cases}}\)

\(\Rightarrow b+\sqrt{a^2+b}=a\)

\(\Leftrightarrow b^2+2b\sqrt{a^2+b}+a^2+b=a^2\)

\(\Leftrightarrow b\left(b+2\sqrt{a^2+b}+1\right)=0\)

Làm nôt