Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta thấy \(|x-3|\geq 0; |5x-1|\geq 0, \forall x\in\mathbb{R}\)
Do đó để tổng \(2|x-3|+|5x-1|=0\) thì \(|x-3|=|5x-1|=0\)
\(\Rightarrow \left\{\begin{matrix} x=3\\ x=\frac{1}{5}\end{matrix}\right.\) (vô lý)
Do đó PT vô nghiệm
Bài 2: Ta xét các khoảng, đoạn giá trị của $x$ để phá trị tuyệt đối.
\(2|x|-|x+1|=2\)
TH1: \(x\geq 0\Rightarrow \left\{\begin{matrix} |x|=x\\ |x+1|=x+1\end{matrix}\right.\). PT trở thành:
\(2x-(x+1)=2\Leftrightarrow x=3\) (thỏa mãn)
TH2: \(0>x\geq -1\Rightarrow \left\{\begin{matrix} |x|=-x\\ |x+1|=x+1\end{matrix}\right.\). PT trở thành:
\(-2x-(x+1)=2\Leftrightarrow x=-1\) (t/m)
TH3: \(x< -1\Rightarrow \left\{\begin{matrix} |x|=-x\\ |x+1|=-(x+1)\end{matrix}\right.\). PT trở thành:
\(-2x+(x+1)=2\Leftrightarrow x=-1\) (loại vì $x< -1$)
Vậy $x=-1$ hoặc $x=3$
b/ \(\frac{\left(b-c\right)\left(1+a\right)^2}{x+a^2}+\frac{\left(c-a\right)\left(1+b\right)^2}{x+b^2}+\frac{\left(a-b\right)\left(1+c\right)^2}{x+c^2}=0\)
\(\Leftrightarrow x^2-\left(ab+bc+ca+2a+2b+2c+1\right)x+2abc+ab+bc+ca=0\)
Đặt: \(\hept{\begin{cases}ab+bc+ca+2a+2b+2c+1=m\\2abc+ab+bc+ca=n\end{cases}}\) (đặt cho gọn)
\(\Leftrightarrow x^2-mx+n=0\)
\(\Leftrightarrow\left(x^2-\frac{2m}{2}x+\frac{m^2}{4}\right)-\frac{m^2}{4}+n=0\)
\(\Leftrightarrow\left(x-\frac{m}{2}\right)^2=\frac{m^2}{4}-n\)
\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{\frac{m^2}{4}-n}+\frac{m}{2}\\x=-\sqrt{\frac{m^2}{4}-n}+\frac{m}{2}\end{cases}}\)
a/ \(\frac{1}{a+b-x}=\frac{1}{a}+\frac{1}{b}+\frac{1}{x}\)
\(\Leftrightarrow\left(a+b\right)x^2-\left(a^2+b^2\right)x-ab\left(a+b\right)=0\)
\(\Leftrightarrow\left(\left(a+b\right)x^2-\frac{2x\sqrt{a+b}.\left(a^2+b^2\right)}{2\sqrt{a+b}}+\frac{\left(a^2+b^2\right)^2}{4\left(a+b\right)}\right)-\frac{\left(a^2+b^2\right)^2}{4\left(a+b\right)}-ab\left(a+b\right)=0\)
\(\Leftrightarrow\left(\sqrt{a+b}x-\frac{a^2+b^2}{2\sqrt{a+b}}\right)^2=\frac{\left(a^2+b^2\right)^2}{4\left(a+b\right)}+ab\left(a+b\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{\frac{\left(a^2+b^2\right)^2}{4\left(a+b\right)}+ab\left(a+b\right)}+\frac{a^2+b^2}{2\sqrt{a+b}}}{\sqrt{a+b}}\\x=\frac{-\sqrt{\frac{\left(a^2+b^2\right)^2}{4\left(a+b\right)}+ab\left(a+b\right)}+\frac{a^2+b^2}{2\sqrt{a+b}}}{\sqrt{a+b}}\end{cases}}\)
2x+4<a2 -ax
2x-ax<a2 -4
(2-a)x<(a--2)(a+2)
-(2-a)x >(2-a)(2+a)
-x>2+a
=> x<-(2+a)
\(\Leftrightarrow2x+4+ax-a^2<0\)
\(\Leftrightarrow\left(2+a\right)x<\left(a-2\right)\left(a+2\right)\)
nếu a=-2=> vô nghiệm
nếu a<-2=>x>(a-2)
nếu a>-2=> x<(a-2)
Lập bảng xét dấu là ra bạn nhé
Nếu bạn chưa hiểu cách làm bài tập về bảng xét dấu thì tra google hay coi youtube nhé
chúc bạn thành công
Áp dụng bất đẳng thức giá trị tuyệt đối \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) dấu "=" xảy ra khi \(ab\ge0\) ta có :
\(\left|x-3\right|+\left|5-x\right|\ge\left|x-3+5-x\right|=\left|2\right|=2\)
Dấu "=" xảy ra khi \(\left(x-3\right)\left(5-x\right)\ge0\)
Trường hợp 1 :
\(\hept{\begin{cases}x-3\ge0\\5-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le5\end{cases}}}\)
\(\Rightarrow\)\(3\le x\le5\)
Trường hợp 2 :
\(\hept{\begin{cases}x-3\le0\\5-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le3\\x\ge5\end{cases}}}\) ( loại )
Do đó :
\(2a=2\) \(\Rightarrow\) \(a=\frac{2}{2}=1\)
Vậy \(a=1\) khi \(3\le x\le5\)
Chúc bạn học tốt ~