K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
28 tháng 6 2020

ĐKXĐ: \(x\ge-\frac{1}{3}\)

Do \(\sqrt{3x+1}+\sqrt{x+2}>0;\forall x\ge-\frac{1}{3}\)

Nhân 2 vế của pt với \(\sqrt{3x+1}+\sqrt{x+2}\) và rút gọn ta được:

\(\left(2x-1\right)\left(\sqrt{3x^2+7x+2}+4\right)=2\left(2x-1\right)\left(\sqrt{3x+1}+\sqrt{x+2}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\\sqrt{3x^2+7x+2}+4=2\left(\sqrt{3x+1}+\sqrt{x+2}\right)\left(1\right)\end{matrix}\right.\)

Xét (1)

\(\Leftrightarrow\sqrt{\left(3x+1\right)\left(x+2\right)}-2\sqrt{3x+1}-2\left(\sqrt{x+2}-2\right)=0\)

\(\Leftrightarrow\sqrt{3x+1}\left(\sqrt{x+2}-2\right)-2\left(\sqrt{x+2}-2\right)=0\)

\(\Leftrightarrow\left(\sqrt{3x+1}-2\right)\left(\sqrt{x+2}-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{3x+1}=2\\\sqrt{x+2}=2\end{matrix}\right.\) \(\Leftrightarrow...\)

25 tháng 9 2019

\(DK:x\ge-\frac{1}{3}\)

\(\Leftrightarrow\frac{2x-1}{\sqrt{3x+1}+\sqrt{x+2}}\left(\sqrt{3x^2+7x+2}+4\right)-2\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(\frac{\sqrt{3x^2+7x+2}+4}{\sqrt{3x+1}+\sqrt{x+2}}-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\left(1\right)\\\frac{\sqrt{3x^2+7x+2}+4}{\sqrt{3x+1}+\sqrt{x+2}}=2\left(2\right)\end{cases}}\)

Xet PT(2)

Dat \(\hept{\begin{cases}\sqrt{3x+1}=a\\\sqrt{x+2}=b\end{cases}\left(a,b\ge0\right)}\)

PT(2)\(\Leftrightarrow\frac{ab+4}{a+b}=2\)

\(\Leftrightarrow2a+2b-ab-4=0\)

\(\Leftrightarrow\left(a+2\right)\left(2-b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=-2\left(3\right)\\b=2\left(4\right)\end{cases}}\)

Xet PT(3)

Ta co:\(a\ge0\)

Nen PT vo nghiem

Xet PT (4)

\(\Leftrightarrow\sqrt{x+2}=2\)

\(\Leftrightarrow x+2=4\)

\(\Leftrightarrow x=2\)

Vay PT co 2 nghiem la \(x_1=\frac{1}{2};x_2=2\)

\(\left(x-1\right)\left(\sqrt{3x+4}-1\right)=3\left(x+1\right)\)

\(\Leftrightarrow x=7\)

~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~

 ~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~

5 tháng 8 2017

 (x−1)(√3x+4−1)=3(x+1)  ⇔x=7

tk mk nha

12 tháng 8 2017

câu 2 đề sai

12 tháng 8 2017

ok tớ sẽ giải nhunh ! sửa câu 2 đi rồi tớ sẽ làm cho bn !

câu 1 ) thì đúng

câu 2 sai đề

1 tháng 1 2019

a) ĐK:x\(\ge\dfrac{3}{4}\)

\(3\left(x^2-1\right)+4x=4x\sqrt{4x-3}\Leftrightarrow3x^2-3+4x=4x\sqrt{4x-3}\Leftrightarrow4x-3-4x\sqrt{4x-3}+4x^2-x^2=0\Leftrightarrow\left(\sqrt{4x-3}-2x\right)^2-x^2=0\Leftrightarrow\left(\sqrt{4x-3}-2x-x\right)\left(\sqrt{4x-3}-2x+x\right)^2=0\Leftrightarrow\left(\sqrt{4x-3}-3x\right)\left(\sqrt{4x-3}-x\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}\sqrt{4x-3}-3x=0\\\sqrt{4x-3}-x=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}\sqrt{4x-3}=3x\left(x\ge0\right)\\\sqrt{4x-3}=x\left(x\ge0\right)\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}4x-3=9x^2\\4x-3=x^2\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}9x^2-4x+3=0\\x^2-4x+3=0\end{matrix}\right.\)(*)

Vì 9x2-4x+3>0 nên 9x2-4x+3=0(loại)

(*)\(\Leftrightarrow x^2-4x+3=0\Leftrightarrow x^2-x-3x+3=0\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=1\left(tm\right)\\x=3\left(tm\right)\end{matrix}\right.\)

Vậy S={1;3}

b)

\(\left\{{}\begin{matrix}7x^3+y^3+3xy\left(x-y\right)-12x^2+6x=1\left(1\right)\\\sqrt[3]{4x+y+1}+\sqrt{3x+2y}=4\left(2\right)\end{matrix}\right.\)

(1)⇔ y3 - 3y2x + 3x2y + 7x3 = 1 - 6x + 12x2 <=> y3 - 3y2x + 3x2y - x3 = 1 - 6x + 12x2 - 8x3 <=> (y - x)3 = (1 - 2x)3 <=> y - x = 1 - 2x <=> y = 1 - x

Thế vào (2)\(\Leftrightarrow\sqrt[3]{4x+1-x+1}+\sqrt{3x+2\left(1-x\right)}=4\Leftrightarrow\sqrt[3]{3x+2}+\sqrt{x+2}=4\)

Đặt a=\(\sqrt[3]{3x+2}\Leftrightarrow a^3=3x+2\)

b=\(\sqrt{x+2}\left(b\ge0\right)\Leftrightarrow b^2=x+2\Leftrightarrow3b^2=3x+6\)

Vậy 3b2-a3=4

Vậy ta sẽ có hệ phương trình \(\left\{{}\begin{matrix}3b^2-a^3=4\\a+b=4\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}3b^2-a^3=4\left(3\right)\\b=4-a\end{matrix}\right.\)

(3)\(\Leftrightarrow3\left(4-a\right)^2-a^3=4\Leftrightarrow a^3-3a^2+24a-44=0\Leftrightarrow\left(a-2\right)\left(a^2-a+22\right)=0\)(*)

Ta có a2-a+22>0

Vậy (*)\(\Leftrightarrow a-2=0\Leftrightarrow a=2\Leftrightarrow b=2\)

Vậy \(\left\{{}\begin{matrix}\sqrt[3]{3x+2}=2\\\sqrt{x+2}=2\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}3x+2=8\\x+2=4\end{matrix}\right.\)\(\Leftrightarrow x=2\Leftrightarrow y=-1\)

Vậy (x;y)=(2;-1)

1 tháng 1 2019

Em cảm ơn ạ ^^ !!

AH
Akai Haruma
Giáo viên
12 tháng 1 2019

Câu 1:

ĐK: \(x\geq -8\)

Đặt \(\sqrt{x+8}=a(a\geq 0)\) thì pt tương đương với:

\((4x+2)a=3x^2+6x+(x+8)=3x^2+6x+a^2\)

\(\Leftrightarrow 3x^2+6x+a^2-4ax-2a=0\)

\(\Leftrightarrow (4x^2-4ax+a^2)-x^2+6x-2a=0\)

\(\Leftrightarrow (2x-a)^2+2(2x-a)-x^2+2x=0\)

\(\Leftrightarrow (2x-a)^2+2(2x-a)+1-(x^2-2x+1)=0\)

\(\Leftrightarrow (2x-a+1)^2-(x-1)^2=0\)

\(\Leftrightarrow (x-a+2)(3x-a)=0\)

\(\bullet \)Nếu \(x-a+2=0\Leftrightarrow x+2=a\Rightarrow (x+2)^2=a^2=x+8\)

\(\Leftrightarrow x^2+3x+4=0\Rightarrow \left[\begin{matrix} x=1\\ x=-4\end{matrix}\right.\) . Ở đây chỉ có TH $x=1$ thỏa mãn còn $x=-4$ bị loại vì $x+2=a\geq 0$

\(\bullet \) Nếu \(3x-a=0\Rightarrow 3x=a\Rightarrow 9x^2=a^2=x+8\)

\(\Leftrightarrow 9x^2-x-8=0\Rightarrow \left[\begin{matrix} x=1\\ x=\frac{-8}{9}\end{matrix}\right.\). Ở đây chỉ có TH $x=1$ thỏa mãn còn $x=-\frac{8}{9}$ loại vì \(9x=a\geq 0\rightarrow x\geq 0\)

Vậy PT có nghiệm duy nhất $x=1$

AH
Akai Haruma
Giáo viên
12 tháng 1 2019

Câu 2:
ĐK: \(x\geq \frac{-1}{3}\)

Đặt \(\sqrt{3x+1}=a(a\geq 0)\). Khi đó pt đã cho tương đương với:

\(x^2+x+(3x+1)-2x\sqrt{3x+1}=\sqrt{3x+1}\)

\(\Leftrightarrow x^2+x+a^2-2ax=a\)

\(\Leftrightarrow (x^2+a^2-2ax)+(x-a)=0\)

\(\Leftrightarrow (x-a)^2+(x-a)=0\Leftrightarrow (x-a)(x-a+1)=0\)

\(\Rightarrow \left[\begin{matrix} x=a\\ x+1=a\end{matrix}\right.\)

Nếu \(x=a=\sqrt{3x+1}\Rightarrow \left\{\begin{matrix} x\geq 0\\ x^2=3x+1\end{matrix}\right.\Rightarrow x=\frac{3+\sqrt{13}}{2}\) (t/m)

Nếu \(x+1=a=\sqrt{3x+1}\Rightarrow \left\{\begin{matrix} x\geq -1\\ (x+1)^2=3x+1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq -1\\ x^2-x=0\end{matrix}\right.\)

\(\Rightarrow x=0\) hoặc $x=1$

Vậy.........

30 tháng 6 2017

a)Đk:\(x\ge\frac{1}{2}\)

\(pt\Leftrightarrow4x^2-12x+4+4\sqrt{2x-1}=0\)

\(\Leftrightarrow\left(2x-1\right)^2-4\left(2x-1\right)-1+4\sqrt{2x-1}=0\)

Đặt \(t=\sqrt{2x-1}>0\Rightarrow\hept{\begin{cases}t^2=2x-1\\t^4=\left(2x-1\right)^2\end{cases}}\)

\(t^4-4t^2+4t-1=0\)

\(\Leftrightarrow\left(t-1\right)^2\left(t^2+2t-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}t-1=0\\t^2+2t-1=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}t=1\\t=\sqrt{2}-1\end{cases}\left(t>0\right)}\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x=2-\sqrt{2}\end{cases}}\) là nghiệm thỏa pt

28 tháng 11 2019

Hung nguyen, Trần Thanh Phương, Sky SơnTùng, @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @No choice teen

help me, pleaseee

Cần gấp lắm ạ!