Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có Pt
<=>\(\frac{9}{x^2}+2+\frac{2x}{\sqrt{2x^2+9}}-3=0\Leftrightarrow\frac{2x^2+9}{x^2}+\frac{2x}{\sqrt{2x^2+9}}-3=0\)
\(dat\frac{\sqrt{2x^2+9}}{x}=a\)
ta có pt
<=>\(a^2+\frac{2}{a}-3=0\Leftrightarrow a^3-3a+2=0\Leftrightarrow\left(a+2\right)\left(a-1\right)^2=0\)
đến đây thì dex rồi ^_^
pt<=> \(\frac{9}{x^2}+2+\frac{2x}{\sqrt{2x^2+9}}-3\)=0 ĐK x khác 0
<=> \(\frac{2x^2+9}{x^2}+2.\frac{x}{\sqrt{2x^2+9}}-3=0\)<=>\(\left(\frac{\sqrt{2x^2+9}}{x}\right)^2+2.\frac{x}{\sqrt{2x^2+9}}-3=0\)(1)
Đặt \(\frac{\sqrt{2x^2+9}}{x}=a\). PT (1) <=> \(a^2+2.\frac{1}{a}-3=0\Leftrightarrow a^3-3a+2=0\Leftrightarrow\left(a-1\right)^2\left(a+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}a=1\\a=-2\end{cases}}\)
Còn lại bạn tự giải . Tìm ra x=\(-\frac{3}{\sqrt{2}}\)
Câu 2/
Điều kiện xác định b tự làm nhé:
\(\frac{6}{x^2-9}+\frac{4}{x^2-11}-\frac{7}{x^2-8}-\frac{3}{x^2-12}=0\)
\(\Leftrightarrow x^4-25x^2+150=0\)
\(\Leftrightarrow\left(x^2-10\right)\left(x^2-15\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=10\\x^2=15\end{cases}}\)
Tới đây b làm tiếp nhé.
a. ĐK: \(\frac{2x-1}{y+2}\ge0\)
Áp dụng bđt Cô-si ta có: \(\sqrt{\frac{y+2}{2x-1}}+\sqrt{\frac{2x-1}{y+2}}\ge2\)
\(\)Dấu bằng xảy ra khi \(\frac{y+2}{2x-1}=1\Rightarrow y+2=2x-1\Rightarrow y=2x-3\)
Kết hợp với pt (1) ta tìm được x = -1, y = -5 (tmđk)
b. \(pt\Leftrightarrow\left(\frac{6}{x^2-9}-1\right)+\left(\frac{4}{x^2-11}-1\right)-\left(\frac{7}{x^2-8}-1\right)-\left(\frac{3}{x^2-12}-1\right)=0\)
\(\Leftrightarrow\left(15-x^2\right)\left(\frac{1}{x^2-9}+\frac{1}{x^2-11}+\frac{1}{x^2-8}+\frac{1}{x^2-12}\right)=0\)
\(\Leftrightarrow x^2-15=0\Leftrightarrow\orbr{\begin{cases}x=\sqrt{15}\\x=-\sqrt{15}\end{cases}}\)
a/ ĐK: \(x \ge -1\). Đặt \(\sqrt{x+1}=a \ge 0\)
PT: \(\Leftrightarrow6a-3a-2a=5\)
\(\Leftrightarrow a=5\)
\(\Leftrightarrow x+1=15\Leftrightarrow x=24\) (nhận)
b,c: Hai ý này đều làm theo cách bình phương hoặc đưa về phương trình chứa dấu giá trị tuyệt đối được nhé.
b) Cách 1: ĐKXĐ: Tự tìm
\(\sqrt{x^{2}-4x+4}=2\Leftrightarrow x^{2}-4x+4=4\Leftrightarrow x(x-4)=0\)
\(\Leftrightarrow x=0\) hoặc \(x=4\) cả 2 cái này đều TMĐK
Cách 2: \((\sqrt{x^2-4x+4}=2)\)
\(\Leftrightarrow \sqrt{(x-2)^2}=2\)
\(\Leftrightarrow \mid x-2\mid=2\)
Với \(x\geq 2\) thì :
\(x-2=2 \Leftrightarrow x=4\) (nhận)
Với \(x<2\) thì
\(-x-2=2\Leftrightarrow x=0\) (nhận)
Vậy \(S={0;4}\)
c) Cách 1: \(\sqrt{x^{2}-6x+9}=x-2\Leftrightarrow \left\{\begin{matrix}x\geq 2 \\ x^{2}-6x+9=x^{2}-4x+4 \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix}x\geq 2 \\ x=\frac{5}{2} \end{matrix}\right.\)
Nghiệm TMĐK
Cách 2: \((\sqrt{x^2-6x+9}=x-2)\)
\(\Leftrightarrow \mid x-3\mid =x-2\)
Với \(x\geq 3\) thì
\(x-3=x-2\Leftrightarrow 0x=-1\) ( vô lý)
Với \(x<3\) thì
\(-x+3=x-2\Leftrightarrow -2x=-5 \Leftrightarrow x=\frac{5}{2}\)
Vậy \(S={\frac{5}{2}}\)
d) ĐKXĐ: Tự tìm
\(\sqrt{x^{2}+4}=\sqrt{2x+3}\Leftrightarrow x^{2}+4=2x+3\Leftrightarrow x^{2}-2x+1=0\Leftrightarrow (x-1)^{2}=0\)
\(\Leftrightarrow x=1\)
e) ĐKXĐ: \(x\geq \frac{3}{2}\)
\(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\Leftrightarrow \frac{2x-3}{x-1}=4\Rightarrow 2x-3=4x-4\Leftrightarrow x=\frac{1}{2}\)
Nghiệm không TMĐK.
Phương trình vô nghiệm.
f) ĐKXĐ: \(x\geq \frac{-15}{2}\)
\(x+\sqrt{2x+15}=0\Leftrightarrow 2x+2\sqrt{2x+15}=0\Leftrightarrow 2x+15+2\sqrt{2x+15}+1-16=0\)
\(\Leftrightarrow (\sqrt{2x+15}+1)^{2}-4^{2}=0\Leftrightarrow (\sqrt{2x+15}+5)(\sqrt{2x+15}-3)=0\)
\(\Leftrightarrow \sqrt{2x+15}-3=0\Leftrightarrow \sqrt{2x+15}=3\Leftrightarrow 2x+15=9\Leftrightarrow x=-3\) (TMĐK)
ĐKXĐ: \(x\ne0\)
\(\Leftrightarrow\frac{2x^2+9}{x^2}+\frac{2x}{\sqrt{2x^2+9}}-3=0\)
Đặt \(\frac{x}{\sqrt{2x^2+9}}=a\Rightarrow\frac{2x^2+9}{x^2}=\frac{1}{a^2}\)
\(\frac{1}{a^2}+2a-3=0\)
\(\Leftrightarrow2a^3-3a^2+1=0\)
\(\Leftrightarrow\left(a-1\right)^2\left(2a+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a=1\\a=-\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\sqrt{2x^2+9}\left(x>0\right)\\-2x=\sqrt{2x^2+9}\left(x< 0\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2=2x^2+9\left(vn\right)\\2x^2=9\end{matrix}\right.\) \(\Rightarrow x=\frac{-3\sqrt{2}}{2}\)
\(\dfrac{9}{x^2}+\dfrac{2x}{\sqrt{2x^2+9}}-1=0\)
\(\Leftrightarrow\dfrac{9}{x^2}-2+\dfrac{2x}{\sqrt{2x^2+9}}+1=0\)
\(\Leftrightarrow\dfrac{-\left(2x^2-9\right)}{x^2}+\dfrac{\dfrac{2x^2-9}{2x^2+9}}{\dfrac{2x}{\sqrt{2x^2+9}}-1}=0\)
\(\Leftrightarrow\left(2x^2-9\right)\left(\dfrac{\dfrac{1}{2x^2+9}}{\dfrac{2x}{\sqrt{2x^2+9}}-1}-\dfrac{1}{x^2}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x^2=9\\\dfrac{\dfrac{1}{2x^2+9}}{\dfrac{2x}{\sqrt{2x^2+9}-1}}=\dfrac{1}{x^2}\end{matrix}\right.\)\(\Rightarrow x=-\dfrac{3}{\sqrt{2}}\) (thỏa)
sao mà cái trên tử ở dòng thứ 3 lại là \(\dfrac{2x^2-9}{2x^2+9}\) thế
ĐK: \(x\ge\frac{1}{3}\)
Pt đã cho tương đương với \(\left(18x^2-2x-\frac{8}{3}\right)+9\left(\sqrt{x-\frac{1}{3}}-\frac{1}{3}\right)=0\)
\(\Leftrightarrow\left(18x-8\right)\left(x+\frac{1}{3}\right)+9\frac{x-\frac{1}{3}-\frac{1}{9}}{\sqrt{x-\frac{1}{3}}+\frac{1}{3}}=0\)
\(\Leftrightarrow\left(x-\frac{4}{9}\right)\text{[}18\left(x+\frac{1}{3}\right)+9\frac{1}{\sqrt{x-\frac{1}{3}}+\frac{1}{2}}\text{]}=0\Rightarrow x=\frac{4}{9}\)
CM: Với \(x\ge\frac{1}{3}\Rightarrow18\left(x+\frac{1}{3}\right)+9\frac{1}{\sqrt{x-\frac{1}{3}}+\frac{1}{3}}>0\)
Pt đã cho có nghiệm \(x=\frac{4}{9}\)
bn kiểm tra lại đề câu a nhé
b) ĐKXĐ: \(\forall x\)
\(\sqrt{x^2-2x+1}+\sqrt{x^2-6x+9}=2\)
\(\Leftrightarrow\)\(\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-3\right)^2}=2\)
\(\Leftrightarrow\)\(\left|x-1\right|+\left|x-3\right|=2\) (1)
Nếu \(x< 1\)thì: \(\left(1\right)\Leftrightarrow\left(1-x\right)+\left(3-x\right)=2\)
\(\Leftrightarrow\) \(4-2x=2\) \(\Leftrightarrow\) \(x=1\)(loại)
Nếu \(1\le x< 3\)thì: \(\left(1\right)\Leftrightarrow\left(x-1\right)+\left(3-x\right)=2\)
\(\Leftrightarrow\) \(x-1+3-x=2\)\(\Leftrightarrow\)\(0x=0\) luôn đúng
Nếu \(x\ge3\)thì \(\left(1\right)\Leftrightarrow\left(x-1\right)+\left(x-3\right)=2\)
\(\Leftrightarrow\) \(2x-4=2\) \(\Leftrightarrow\) \(x=3\) luôn đúng
Vậy...
ĐKXĐ: \(x\ne0\)
\(\dfrac{9}{x^2}+2+\dfrac{2x}{\sqrt{2x^2+9}}-3=0\)
\(\Leftrightarrow\dfrac{2x^2+9}{x^2}+\dfrac{2x}{\sqrt{2x^2+9}}-3=0\)
Đặt \(\dfrac{x}{\sqrt{2x^2+9}}=t\)
\(\Rightarrow\dfrac{1}{t^2}+2t-3=0\)
\(\Rightarrow2t^3-3t^2+1=0\)
\(\Rightarrow\left(t-1\right)^2\left(2t+1\right)=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{x}{\sqrt{2x^2+9}}=1\left(x>0\right)\\\dfrac{x}{\sqrt{2x^2+9}}=-\dfrac{1}{2}\left(x< 0\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2=2x^2+9\left(vn\right)\\4x^2=2x^2+9\end{matrix}\right.\)
\(\Rightarrow x=-\dfrac{3\sqrt{2}}{2}\)