K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2023

pt đã cho 

\(\Leftrightarrow2x^2-5x+2-\left(x-2\right)\sqrt{x^2-x+1}=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x-1-\sqrt{x^2-x+1}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\2x-1-\sqrt{x^2-x+1}=0\end{matrix}\right.\)

(*) \(2x-1-\sqrt{x^2-x+1}=0\) (đk: \(x\ge\dfrac{2+\sqrt{3}}{4}\))

Ta thấy \(2x-1+\sqrt{x^2-x+1}\ne0\) với mọi \(x\ge\dfrac{2+\sqrt{3}}{4}\), (*) tương đương:

\(\dfrac{\left(2x-1\right)^2-\left(x^2-x+1\right)}{2x-1+\sqrt{x^2-x+1}}=0\)

\(\Leftrightarrow\dfrac{3x\left(x-1\right)}{2x-1+\sqrt{x^2-x+1}}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\\dfrac{3}{2x-1+\sqrt{x^2-x+1}}=0\left(vôlí\right)\end{matrix}\right.\)

Vậy pt đã cho có tập nghiệm \(S=\left\{1;2\right\}\)

15 tháng 10 2019

dk \(x\ge0;2x+1\ge0< =>x\ge0\)

2(x+1)\(\sqrt{x}+\sqrt{3\left(x+1\right)^2\left(2x+1\right)}=\left(x+1\right)\left(5x^2-8x+8\right)< =>\)

\(2\sqrt{x}+\sqrt{3\left(2x+1\right)}=5x^2-8x+8\)(x+1>0 với x\(\ge0\)) <=>

2\(\sqrt{x}-2+\sqrt{6x+3}-3=5x^2-8x+3\) <=>\(\frac{2\left(x-1\right)}{\sqrt{x}+1}+\frac{6\left(x-1\right)}{\sqrt{6x+3}+3}=\left(x-1\right)\left(5x-3\right)< =>\)x-1=0 <=>x= 1 hoặc

\(\frac{2}{\sqrt{x}+1}+\frac{6}{\sqrt{6x+3}+3}=5x-3\)

x>1 thì \(\frac{2}{\sqrt{x}+1}+\frac{6}{\sqrt{6x+3}+3}< \frac{2}{1+1}+\frac{6}{3+3}=2\)   hay 5x- 3<2 <=> x<1( vô lý)

x<1 thì \(\frac{2}{\sqrt{x}+1}+\frac{6}{\sqrt{6x+3}+}>2\) hay 5x-3>2 <=> x>1 (vô lý)

x=1 thỏa mãn

vậy pt có nghiệm duy nhất x=1

21 tháng 5 2019

ĐKXĐ \(x\ge0\)

Ta thấy x=0 không là nghiệm của phương trình

x khác 0

Chia cả 2 vế cho \(\sqrt{x}\)ta có

\(\sqrt{2x+5+\frac{2}{x}}=3\left(\sqrt{x}-1+\frac{1}{\sqrt{x}}\right)\)

Đặt \(\sqrt{x}+\frac{1}{\sqrt{x}}=a\left(a\ge2\right)\)

=> \(a^2=x+\frac{1}{x}+2\)

Khi đó phương trình tương đương

\(\sqrt{2a^2+1}=3\left(a-1\right)\)

<=> \(\hept{\begin{cases}a\ge1\\2a^2+1=9\left(a-1\right)^2\end{cases}}\)=> a=2

=> \(\sqrt{x}+\frac{1}{\sqrt{x}}=2\)=> x=1

S={1}

26 tháng 7 2019

\(\sqrt{x-2}+\sqrt{4-x}=2x^2-5x-1\)

\(\Leftrightarrow\sqrt{x-2}-1+\sqrt{4-x}-1=2x^2-5x-3\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{1}{\sqrt{x-2}+1}+\frac{1}{\sqrt{4-x}+1}+2x+1\right)=0\)

\(\Rightarrow x=3\)

phương trình còn lại mk chưa giải đc nhưng nó vô nghiệm

26 tháng 7 2019

Em thử câu c nha, sai thì thôi

c) ĐK: \(x\ge-1\).Nhận xét x = 0 là không phải nghiệm, xét x khác 0:

Nhân liên hợp ta được \(\left(x+4\right).\left(\frac{x}{\sqrt{x+1}-1}\right)^2=x^2\)

\(\Leftrightarrow\frac{x+4}{\left(\sqrt{x+1}-1\right)^2}=1\Leftrightarrow x+4=\left(\sqrt{x+1}-1\right)^2\)

\(\Leftrightarrow x+4=x+2-2\sqrt{x+1}\) (rút gọn vế phải)

\(\Leftrightarrow\sqrt{x+1}=-1\left(\text{vô lí}\right)\)

Vậy pt vô nghiệm