Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x^2+2x}+\sqrt{2x-1}=\sqrt{3x^2+4x+1}\)(ĐK:\(x>\frac{1}{2}\))
\(\Leftrightarrow x^2+2x+2x-1+2\sqrt{\left(x^2+2x\right)\left(2x-1\right)}=3x^2+4x+1\)(BP 2 vế)
\(\Leftrightarrow2\sqrt{2x^3-x^2+4x^2-2x}=2x^2+2\)
\(\Leftrightarrow\sqrt{2x^3+2x+3x^2+3-4x-3}=x^2+1\)
Đặt \(x^2+1=t\)
pt\(\Leftrightarrow\sqrt{2xt+3t-\left(4x+3\right)}=t\)
\(\Leftrightarrow2xt+3t-4x-3=t^2\)
\(\Leftrightarrow t^2-t\left(2x+3\right)+4x+3=0\)
\(\Delta=\left(2x+3\right)^2-4.\left(4x+3\right)=4x^2+12x+9-16x-12=4x^2-4x-3\)
\(\hept{\begin{cases}t_1=\frac{2x+3-\sqrt{4x^2-4x-3}}{2}\\t_2=\frac{2x+3+\sqrt{4x^2-4x-3}}{2}\end{cases}}\)
TH1:\(t=\frac{2x+3-\sqrt{4x^2-4x-3}}{2}\)
\(\Rightarrow2x^2+2=2x+3-\sqrt{4x^2-4x-3}\)
\(\Leftrightarrow2x^2+2=2x+3-\sqrt{4x^2+4x-8x-3}\)
\(\Leftrightarrow2t=2x+3-\sqrt{4t-8x-3}\)
Giải ra rồi thay TH2
nếu vế phải là \(2\sqrt{2}\)thì làm như này:
Ta có: \(\sqrt{x-\sqrt{2x-1}}+\sqrt{x+\sqrt{2x-1}}=2\sqrt{2}\)
\(\Leftrightarrow2x+2\sqrt{x^2-2x+1}=8\) (bình phương cả 2 vế rùi khai triển dựa trên hằng đẳng thức)
\(\Leftrightarrow2x+2x-2=8\Leftrightarrow4x=10\Leftrightarrow x=\frac{2}{5}\)
\(\sqrt{1-2x}+\sqrt{1+2x}\ge2-x^2\)
Điều kiện: \(-\frac{1}{2}\le x\le\frac{1}{2}\)
Với điều kiện này thì cả 2 vế đều dương. Bình phương 2 vế ta được.
\(\left(\sqrt{1-2x}+\sqrt{1+2x}\right)^2\ge\left(2-x^2\right)^2\)
\(\Leftrightarrow2\sqrt{\left(1-2x\right)\left(1+2x\right)}\ge x^4-4x^2+2\)
\(\Leftrightarrow\left(2\sqrt{\left(1-2x\right)\left(1+2x\right)}\right)^2\ge\left(x^4-4x+2\right)^2\)
\(\Leftrightarrow x^8-8x^6+20x^4\le0\)
\(\Leftrightarrow x^4\left(x^4-8x^2+20\right)\le0\)
Dễ thấy x4 - 8x2 + 20 > 0
\(\Rightarrow x^4\le0\)
\(\Rightarrow x=0\)
Vậy nghiệm của bất phương trình là: \(x=0\)
Ta có \(\left(2-x^2\right)^2< =\left(\sqrt{1-2x}+\sqrt{1+2x}\right)^2< =2\left(\sqrt{1-2x}^2+\sqrt{1+2x}^2\right)=4\)
=> \(2-x^2< =2\)
Luôn đúng với mọi x
ĐKXĐ:\(x\ge\frac{1}{2}\)
Khi đó pt đã cho
\(\Leftrightarrow x-\sqrt{2x-1}+x+\sqrt{2x-1}\)+\(2\sqrt{\left(x-\sqrt{2x-1}\right)\left(x+\sqrt{2x-1}\right)}=8\)
\(\Leftrightarrow2x+2\sqrt{x^2-2x+1}=8\)
\(\Leftrightarrow x+\sqrt{\left(x-1\right)^2}=4\)
\(\Leftrightarrow x+|x-1|=4\) (1)
TH1:\(\frac{1}{2}\le x< 1\)
Khi đó pt (1)\(\Leftrightarrow x+1-x=4\)
\(\Leftrightarrow1=4\)(Vô lý)
TH2 :x\(\ge1\)
Khi đó pt (1) \(\Leftrightarrow x+x-1=4\)
\(\Leftrightarrow2x=5\)
\(\Leftrightarrow x=\frac{5}{2}\)(tm ĐKXĐ)
Vậy pt đã cho có tập nghiệm S=(\(\frac{5}{2}\))
ĐKXĐ : \(x\ge\frac{1}{2}\)
\(\sqrt{x-\sqrt{2x-1}}+\sqrt{x+\sqrt{2x-1}}=2\sqrt{2}\)
\(\Leftrightarrow\)\(\left(\sqrt{x-\sqrt{2x-1}}+\sqrt{x+\sqrt{2x-1}}\right)^2=\left(2\sqrt{2}\right)^2\)
\(\Leftrightarrow\)\(x-\sqrt{2x-1}+2\sqrt{\left(x-\sqrt{2x-1}\right)\left(x+\sqrt{2x-1}\right)}+x+\sqrt{2x-1}=8\)
\(\Leftrightarrow\)\(x+\sqrt{x^2-2x+1}=4\)
\(\Leftrightarrow\)\(x+\left|x-1\right|=4\)
+) Với \(\hept{\begin{cases}x\ge0\\x-1\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ge1\end{cases}\Leftrightarrow}x\ge1}\) ta có :
\(x+x-1=4\)
\(\Leftrightarrow\)\(x=\frac{5}{2}\) ( thỏa mãn )
Với \(\hept{\begin{cases}x< 0\\x-1< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 0\\x< 1\end{cases}\Leftrightarrow}x< 0}\) ta có :
\(-x-x+1=4\)
\(\Leftrightarrow\)\(x=\frac{-3}{2}\) ( ko thỏa mãn ĐKXĐ )
Vậy \(x=\frac{5}{2}\)
Chúc bạn học tốt ~
\(\sqrt{x^2+2x+1}+\sqrt{x^4-2x^2+2}=1\)
\(\Leftrightarrow\sqrt{\left(x+1\right)^2}+\sqrt{\left(x^2-1\right)^2+1}=1\)
Mà \(\sqrt{\left(x+1\right)^2}+\sqrt{\left(x^2-1\right)^2+1}\ge1\)
nên dấu "=" <=> x = -1
\(\sqrt{x^2+2x+1}+\sqrt{x^4-2x^2+2}=1\)
<=> \(\sqrt{x^2+2x+1}=1-\sqrt{x^4-2x^2+2}\)
<=> \(\left(\sqrt{x^2+2x+1}\right)^2=\left(1-\sqrt{x^4-2x^2+2}\right)^2\)
<=> x2 + 2x + 1 = x4 - 2x2 + 3 - 2\(\sqrt{x^4-2x^2+2}\)
<=> x2 + 2x + 1 - (x4 - 2x) = -2\(\sqrt{x^4-2x^2+2}\) - (x4 - 2x)
<=> -x4 + 3x2 + 1 = -2\(\sqrt{x^4-2x^2+2}+3\)
<=> -x4 + 3x2 + 1 - 3 = -2\(\sqrt{x^4-2x^2+2}\)
<=> (-x4 + 3x2 - 2)2 = (-2\(\sqrt{x^4-2x^2+2}\))2
<=> x8 - 6x6 - 4x5 + 13x4 + 12x3 - 8x2 - 8x + 4 = 4x4 - 8x2 + 8
<=> x = -1
=> x = -1
Đặt \(\sqrt{2x-1}=a\ge0\)
Ta có \(2011x^2-a^2=2010xa\)
\(\Leftrightarrow\left(2010x^2-2010xa\right)+\left(x^2-a^2\right)=0\)
\(\Leftrightarrow\left(x-a\right)\left(2010x+x+a\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=a\\2011x=-a\left(loai\right)\end{cases}}\)
\(\Leftrightarrow x=1\)