Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x4+10x3+26x2+10x+1=0x4+10x3+26x2+10x+1=0
⇔x4+6x3+x2+4x3+24x2+4x+x2+6x+1=0⇔x4+6x3+x2+4x3+24x2+4x+x2+6x+1=0
⇔x2(x2+6x+1)+4x(x2+6x+1)+(x2+6x+1)=0⇔x2(x2+6x+1)+4x(x2+6x+1)+(x2+6x+1)=0
⇔(x2+4x+1)(x2+6x+1)=0⇔(x2+4x+1)(x2+6x+1)=0
⇔(x2+4x+4−3)(x3+6x+9−8)=0⇔(x2+4x+4−3)(x3+6x+9−8)=0
⇔[(x+2)2−3][(x+3)2−8]=0⇔[(x+2)2−3][(x+3)2−8]=0
⇒[(x+2)2−3=0(x+3)2−8=0⇒[(x+2)2−3=0(x+3)2−8=0⇒[(x+2)2=3(x+3)2=8⇒[(x+2)2=3(x+3)2=8⇒⎡⎣⎢⎢⎢x=−4±12−−√2x=−6±32−−√2
a) x^4 - 5x^2 + 4 = 0
<=> (x^2 - 1)(x^2 - 4) = 0
<=> x^2 - 1 = 0 hoặc x^2 - 4 = 0
<=> x = +-1 hoặc x = +-2
b) x^4 - 10x^2 + 9 = 0
<=> (x^2 - 1)(x^2 - 9) = 0
<=> x^2 - 1 = 0 hoặc x^2 - 9 = 0
<=> x = +-1 hoặc x = +-3
c) x^3 + 6x^2 + 11x + 6 = 0
<=> (x^2 + 5x + 6)(x + 1) = 0
<=> (x + 2)(x + 3)(x + 1) = 0
<=> x + 2 = 0 hoặc x + 3 = 0 hoặc x + 1 = 0
<=> x = -2 hoặc x = -3 hoặc x = -1
d) x^3 + 9x^2 + 26x + 24 = 0
<=> (x^2 + 7x + 12)(x + 2) = 0
<=> (x + 3)(x + 4)(x + 2) = 0
<=> x + 3 = 0 hoặc x + 4 = 0 hoặc x + 2 = 0
<=> x = -3 hoặc x = -4 hoặc x = -2
\(C=x^{14}-10x^{13}+10x^{12}-10x^{11}+...+10x^2-10x+10\)
\(=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-\left(x+1\right)x^{11}+..+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)
\(=x^{14}-x^{14}-x^{13}+x^{13}+x^{12}-x^{12}-x^{11}+...+x^3+x^2-x^2-x+x+1\)
\(=1\)
\(2x^4-10x^2+17=2\left(x^4-5x^2+\frac{25}{4}\right)+\frac{9}{2}=2\left(x^2-\frac{5}{2}\right)^2+\frac{9}{2}>0\left(vl\right)\)
=> PT vô nghiệm
\(x^4-x^3+2x^2-x+1=x^2\left(x^2-x+1\right)+x^2-x+1=\left(x^2-x+1\right)\left(x^2+1\right)=\left(x^2+1\right)\left(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right)>0\forall x\)=> Pt vô nghiệm
đề bảo làm j thế???
767756856858573565646769858972765745756756788768768967
2) 2x4-21x3+74x2-105x+50=0
<=>(2x4-2x3)+(-19x3+19x2)+(55x2-55x)+(-50x+50)=0
<=>2x3.(x-1)-19x2.(x-1)+55x.(x-1)-50.(x-1)=0
<=>(x-1)(2x3-19x2+55x-50)=0
<=>(x-1)[(2x3-20x2+50x)+(x2+5x-50)]=0
<=>(x-1)[2x.(x-5)2+(x2-5x+10x-50)]=0
<=>(x-1){2x.(x-5)2+[x.(x-5)+10.(x-5)]}=0
<=>(x-1)[2x.(x-5)2+(x-5)(x+10)]=0
<=>(x-1)(x-5)(2x2-10x+x+10)=0
<=>(x-1)(x-5)(2x2-5x-4x+10)=0
<=>(x-1)(x-5)[x.(2x-5)-2.(2x-5)]=0
<=>(x-1)(x-5)(x-2)(2x-5)=0
<=>x=1 hoặc x=5 hoặc x=2 hoặc x=5/2
\(x^4-10x^3+26x^2-10x+1=0\)
\(\Leftrightarrow\)\(\left(x^4-4x^3+x^2\right)-\left(6x^3-24x+6x\right)+\left(x^2-4x+1\right)=0\)
\(\Leftrightarrow\)\(x^2\left(x^2-4x+1\right)-6x\left(x^2-4x+1\right)+\left(x^2-4x+1\right)=0\)
\(\Leftrightarrow\)\(\left(x^2-6x+1\right)\left(x^2-4x+1\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x^2-6x+1=0\\x^2-4x+1=0\end{cases}}\)
Nếu \(x^2-6x+1=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=3-\sqrt{8}\\x=\sqrt{8}+3\end{cases}}\)
Nếu \(x^2-4x+1=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=2-\sqrt{3}\\x=\sqrt{3}+2\end{cases}}\)
Vậy....