Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<=> (x2 +2)2 =( \(2\sqrt{x^3+1}\)) 2
<=> x4 +4x2 +4 = 4(x3+1 )
<=> x4 +4x2 +4- 4x3 -4=0
<=> x4 +4x2 - 4x3 =0
<=> x2( x2 - 4x + 4 ) = 0
<=> \(\orbr{\begin{cases}x^2=0\\x^2-4x+4=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=0\\\left(x-2\right)^2=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
vậy nghiệm của pt là x=0 hoặc x=2
Đk: tự tìm
\(pt\Leftrightarrow\sqrt{\left(x-4\right)\left(x+4\right)}+\sqrt{x-4}=0\)
\(\Leftrightarrow\sqrt{x-4}\left(\sqrt{x+4}+1\right)=0\)
Dễ thấy: \(\sqrt{x+4}\ge0\forall x\)
\(\Rightarrow\sqrt{x+4}+1\ge1>0\forall x\) (vô nghiệm)
\(\Rightarrow\sqrt{x-4}=0\Rightarrow x-4=0\Rightarrow x=4\)
Điều kiện xác định
\(\hept{\begin{cases}2-x^2+2x\ge0\\-x^2-6x-8\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}-0,73\le x\le2,73\\-4\le x\le-2\end{cases}}\)
=> Tập xác định là tập rỗng
Vậy pt vô nghiệm
ĐKXĐ: \(x\ge2\)
\(6x-3\sqrt{3x-6}=12\Leftrightarrow3\left(2x-\sqrt{3x-6}\right)=12\Leftrightarrow2x-\sqrt{3x-6}=4\)
<=>\(2x-4=\sqrt{3x-6}\Leftrightarrow\left(2x-4\right)^2=\left(\sqrt{3x-6}\right)^2\Leftrightarrow4x^2-16x+16=3x-6\)
<=>\(4x^2-19x+22=0\Leftrightarrow4x^2-8x-11x+22=0\Leftrightarrow4x\left(x-2\right)-11\left(x-2\right)=0\)
<=>\(\left(4x-11\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}4x-11=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{11}{4}\\x=2\end{cases}}\)
Nghĩ đc bài nào làm bài đấy ^^
\(\text{1)}\sqrt{x^2+x-3}=x+m\)\(\text{(ĐKXĐ: }x^2+x-3\ge0\)\(\text{)}\)
\(\Leftrightarrow x^2+x-3=x^2+2mx+m^2\)
\(\Leftrightarrow x-2mx=m^2+3\)
\(\Leftrightarrow x\left(1-2m\right)=m^2+3\)(1)
*Nếu 1 - 2m = 0 thì \(m=\frac{1}{2}\)
Khi đó pt (1) \(\Leftrightarrow0x=\frac{1}{4}+3\)
Pt vô nghiệm
*Nếu 1 - 2m \(\ne\)0 thì \(m\ne\frac{1}{2}\)
Khi đó pt (1) có nghiệm duy nhất \(x=\frac{m^2+3}{1-2m}\)
Kết hợp ĐKXĐ \(x^2+x-3\ge0\)
\(\Leftrightarrow\frac{\left(m^2+3\right)^2}{\left(1-2m\right)^2}+\frac{m^2+3}{1-2m}-3\ge0\)
Đến đây quy đồng lên được điều kiện của m và kết hợp m khác 1/2
=> KL
2) ĐKXĐ : -1 < x < 8
Đặt \(\sqrt{1+x}+\sqrt{8-x}=a\ge0\)
\(\Rightarrow a^2=9+2\sqrt{\left(1+x\right)\left(8-x\right)}\)
\(\Rightarrow\sqrt{\left(1+x\right)\left(8-x\right)}=\frac{a^2-9}{2}\)
Khi đó \(a+\frac{a^2-9}{2}=m\)
\(\Leftrightarrow2a+a^2-9=2m\)
\(\Leftrightarrow a^2+2a-9-2m=0\)(1)
Xét \(\Delta'=1-\left(-9-2m\right)=10+2m\)
Pt có nghiệm \(\Leftrightarrow\Delta'\ge0\Leftrightarrow m\ge-5\)
Từ (1) \(\Rightarrow a^2+2a-9=2m\ge2\left(-5\right)=-10\)
\(\Leftrightarrow a^2+2a-9\ge-10\)
\(\Leftrightarrow a^2+2a+1\ge0\)
\(\Leftrightarrow\left(a+1\right)^2\ge0\)(Luôn đúng)
Vậy *với m> -5 thì pt có vô số nghiệm nằm trong khoảng -1 < x < 8
* với m < -5 thì pt vô nghiệm
P/S: chả bt cách này đúng ko nx =.='
\(\sqrt{x-2}-\sqrt{4-x}=0\)
\(\Leftrightarrow\sqrt{x-2}=\sqrt{4-x}\)
\(\Leftrightarrow\left(\sqrt{x-2}\right)^2=\left(\sqrt{4-x}\right)^2\)
\(\Leftrightarrow x-2=4-x\)
\(\Leftrightarrow2x=4+2\)
\(\Leftrightarrow2x=6\)
\(\Leftrightarrow x=3\)
\(\sqrt{16x}=8\Leftrightarrow16x=64\Leftrightarrow x=4\)
Ta có: \(\sqrt{16x}=8\)
\(\Leftrightarrow16x=64\)
hay x=4