Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{16x-32}+\sqrt{25x-50}=187\sqrt{9x-18}\)
\(\Leftrightarrow\sqrt{16\left(x-2\right)}+\sqrt{25\left(x-2\right)}=187\sqrt{9\left(x-2\right)}\)
\(\Leftrightarrow4\sqrt{x-2}+5\sqrt{x-2}=561\sqrt{x-2}\)
\(\Leftrightarrow552\sqrt{x-2}=0\)
\(\Leftrightarrow\sqrt{x-2}=0\)
\(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
1.
\(\sqrt{14+6\sqrt{5}}-\sqrt{\dfrac{\sqrt{5}-2}{\sqrt{5}+2}}\)
=\(\sqrt{9+6\sqrt{5}+5}-\dfrac{\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+2}}\)
=\(\sqrt{\left(3+\sqrt{5}\right)^2}-\dfrac{\sqrt{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}}{\sqrt{\left(\sqrt{5}+2\right)\left(\sqrt{5}+2\right)}}\)
= \(3+\sqrt{5}-\dfrac{\sqrt{5-4}}{\sqrt{\left(\sqrt{5}+2\right)^2}}\)
= \(\dfrac{3\left(\sqrt{5}+2\right)}{\sqrt{5+2}}+\dfrac{\sqrt{5}\left(\sqrt{5}+2\right)}{\sqrt{5}+2}-\dfrac{1}{\sqrt{5}+2}\)
=\(\dfrac{5\sqrt{5}+10}{\sqrt{5}+2}=\dfrac{5\left(\sqrt{5}+2\right)}{\sqrt{5}+2}=5\)
2, \(\sqrt{4x+8}+\sqrt{9x+18}-\sqrt{9}=\sqrt{16x+32}\)
⇔\(\sqrt{4\left(x+2\right)}+\sqrt{9\left(x+2\right)}-3=\sqrt{16\left(x+2\right)}\)
⇔\(2\sqrt{x+2}+3\sqrt{x+2}-4\sqrt{x+2}=3\)
\(\Leftrightarrow\sqrt{x+2}=3\)
⇔\(x+2=9\)
⇔x=7
Bài 1:
Ta có: \(\sqrt{16x-32}+\sqrt{25x-50}=18+\sqrt{9x-18}\)
\(\Leftrightarrow\sqrt{16\left(x-2\right)}+\sqrt{25\left(x-2\right)}=18+\sqrt{9\left(x-2\right)}\)
\(\Leftrightarrow4\sqrt{x-2}+5\sqrt{x-2}=18+3\sqrt{x-2}\)
\(\Leftrightarrow6\sqrt{x-2}=18\)
\(\Leftrightarrow\sqrt{x-2}=3\)
\(\Leftrightarrow\left(\sqrt{x-2}\right)^2=3^2\)
\(\Leftrightarrow x-2=9\)
\(\Leftrightarrow x=11\)
Vậy tập nghiệm của PT \(S=\left\{11\right\}\)
Câu a : ĐK : \(x\ge\dfrac{3}{4}\)
\(\sqrt{3x+1}=\sqrt{4x-3}\)
\(\Leftrightarrow3x+1=4x-3\)
\(\Leftrightarrow-x=-4\)
\(\Leftrightarrow x=4\left(TM\right)\)
Vậy \(S=\left\{4\right\}\)
Câu b : ĐK : \(x\ge-2\)
\(\sqrt{9x+18}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25x+50}=6\)
\(\Leftrightarrow3\sqrt{x+2}-5\sqrt{x+2}+4\sqrt{x+2}=6\)
\(\Leftrightarrow2\sqrt{x+2}=6\)
\(\Leftrightarrow\sqrt{x+2}=3\)
\(\Leftrightarrow x+2=9\)
\(\Leftrightarrow x=7\left(TM\right)\)
Vậy \(S=\left\{7\right\}\)
1/ \(\Leftrightarrow\left|2x-1\right|=7\Leftrightarrow\left[{}\begin{matrix}2x-1=7\\2x-1=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)
2/ \(\Leftrightarrow6\sqrt{x+2}-2\sqrt{x+2}=9\sqrt{x+2}-10\)
\(\Leftrightarrow5\sqrt{x+2}=10\)
\(\Leftrightarrow\sqrt{x+2}=2\)
\(\Leftrightarrow x=2\)
a) \(4\sqrt{4x-8}-2\sqrt{9x-18}+\sqrt{16x-32}=5\)
\(\rightarrow4.2\sqrt{x-2}-2.3\sqrt{x-2}+4\sqrt{x-2}=5\)
\(\rightarrow\sqrt{x-2}\left(8-6+4\right)=5\)
\(\rightarrow6\sqrt{x-2}=5\)
\(\rightarrow\sqrt{x-2}=\frac{5}{6}\)
\(\rightarrow x-2=\frac{25}{36}\)
\(\Rightarrow x=\frac{97}{36}\)
b)\(\sqrt{x^2+6x+9}-2=7\)
\(\rightarrow\sqrt{\left(x+3\right)^2}=9\)
\(\rightarrow x+3=9\)
\(\Rightarrow x=6\)
Nhớ tick mik nha
à ừ, nhầm chút!! thông cảm nha! có gì bạn tham khảo bài của Mo Nguyễn Văn
a) \(\sqrt{25x+75}+3\sqrt{x-2}=2+4\sqrt{x+3}+\sqrt{9x-18}\) (ĐKXĐ : \(x\ge2\) )
\(\Leftrightarrow5\sqrt{x+3}+3\sqrt{x-2}-4\sqrt{x+3}-3\sqrt{x-2}=2\)
\(\Leftrightarrow\sqrt{x+3}=2\)
\(\Leftrightarrow x+3=4\)
\(\Leftrightarrow x=1\) ( Thỏa mãn ĐKXĐ )
c) \(\sqrt{4x+20}+\sqrt{x+5}-\dfrac{1}{3}\sqrt{9x+45}=4\) (ĐKXĐ : \(x\ge-5\) )
\(\Leftrightarrow2\sqrt{x+5}+\sqrt{x+5}-\sqrt{x+5}=4\)
\(\Leftrightarrow2\sqrt{x+5}=4\)
\(\Leftrightarrow\sqrt{x+5}=2\)
\(\Leftrightarrow x+5=4\)
\(\Leftrightarrow x=-1\) ( Thỏa mãn ĐKXĐ )
Vậy.......
a/ \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\) (ĐKXĐ : \(x\ge1\))
\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)
\(\Leftrightarrow2\sqrt{x-1}=2\Leftrightarrow x-1=1\Leftrightarrow x=2\)
b/ \(\sqrt{9x^2+18}+2\sqrt{x^2+2}-\sqrt{25x^2+50}+3=0\)
\(\Leftrightarrow3\sqrt{x^2+2}+2\sqrt{x^2+2}-5\sqrt{x^2+2}+3=0\)
<=> 3 = 0 (vô lý)
=> pt vô nghiệm.
c/ \(\frac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\) (ĐKXĐ : x>-5/7)
\(\Leftrightarrow9x-7=7x+5\Leftrightarrow2x=12\Leftrightarrow x=6\)
d/ \(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\) (ĐKXĐ : \(x\ge\frac{3}{2}\))
\(\Leftrightarrow2x-3=4\left(x-1\Leftrightarrow\right)2x=1\Leftrightarrow x=\frac{1}{2}\) (loại)
Vậy pt vô nghiệm.
a) \(\sqrt{1-8x+16x^2}=\dfrac{1}{3}\)
\(\Leftrightarrow\sqrt{1^2-2\cdot4x\cdot1+\left(4x\right)^2}=\dfrac{1}{3}\)
\(\Leftrightarrow\sqrt{\left(4x-1\right)^2}=\dfrac{1}{3}\)
\(\Leftrightarrow\left|4x-1\right|=\dfrac{1}{3}\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-1=\dfrac{1}{3}\left(ĐK:x\ge\dfrac{1}{4}\right)\\4x-1=\dfrac{1}{3}\left(ĐK:x< \dfrac{1}{4}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x=\dfrac{4}{3}\\4x=\dfrac{2}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\left(tm\right)\\x=\dfrac{1}{6}\left(tm\right)\end{matrix}\right.\)
b) \(\sqrt{16x-32}+\sqrt{25x-50}=18+\sqrt{9x-18}\) (ĐK: \(x\ge2\))
\(\Leftrightarrow\sqrt{16\left(x-2\right)}+\sqrt{25\left(x-2\right)}=18+\sqrt{9\left(x-2\right)}\)
\(\Leftrightarrow4\sqrt{x-2}+5\sqrt{x-2}=18+3\sqrt{x-2}\)
\(\Leftrightarrow6\sqrt{x-2}=18\)
\(\Leftrightarrow\sqrt{x-2}=3\)
\(\Leftrightarrow x-2=9\)
\(\Leftrightarrow x=9+2\)
\(\Leftrightarrow x=11\left(tm\right)\)