K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2021

1) -2(x - 3) + 5x (x - 1) = 5x (x + 1)

<=> -2x + 6 + 5x2 - 5x = 5x2 + 5x

<=> 6 = 5x2 + 5x + 2x - 5x2 + 5x

<=> 6 = 12x

<=> \(\dfrac{6}{12}\) = x = 0,5 

vậy tập nghiệm S ={0,5}

2) 7 - (2x + 4) = -(x + 4) 

<=> 7 - 2x - 4 = -x - 4

<=> 7 - 4 + 4 = -x + 2x

<=> 7 = x 

vậy tập nghiệm S ={7}

9 tháng 5 2021

a,\(2x+5=2-x\)

\(< =>2x+x+5-2=0\)

\(< =>3x+3=0\)

\(< =>x=-1\)

b, \(/x-7/=2x+3\)

Với \(x\ge7\)thì \(PT< =>x-7=2x+3\)

\(< =>2x-x+3+7=0\)

\(< =>x+10=0< =>x=-10\)( lọai )

Với \(x< 7\)thì \(PT< =>7-x=2x+3\)

\(< =>2x+x+3-7=0\)

\(< =>3x-4=0< =>x=\frac{4}{3}\) ( loại )

9 tháng 5 2021

c,\(\frac{4}{x+2}-\frac{4x-6}{4x-x^3}=\frac{x-3}{x\left(x-2\right)}\left(đk:x\ne-2;0;2\right)\)

\(< =>\frac{4x\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}+\frac{4x-6}{x\left(x-2\right)\left(2+x\right)}=\frac{\left(x-3\right)\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}\)

\(< =>4x^2-8x+4x-6=x^2-x-6\)

\(< =>4x^2-x^2-4x+x-6+6=0\)

\(< =>3x^2-3x=0< =>3x\left(x-1\right)=0< =>\orbr{\begin{cases}x=0\left(loai\right)\\x=1\left(tm\right)\end{cases}}\)

23 tháng 2 2021

Mình khuyên bạn thế này : 

Bạn nên tách những câu hỏi ra 

Như vậy các bạn sẽ dễ giúp

Và cũng có nhiều bạn giúp hơn !

23 tháng 2 2021

Bài 1.

a) ( x - 3 )( x + 7 ) = 0

<=> x - 3 = 0 hoặc x + 7 = 0

<=> x = 3 hoặc x = -7

Vậy S = { 3 ; -7 }

b) ( x - 2 )2 + ( x - 2 )( x - 3 ) = 0

<=> ( x - 2 )( x - 2 + x - 3 ) = 0

<=> ( x - 2 )( 2x - 5 ) = 0

<=> x - 2 = 0 hoặc 2x - 5 = 0

<=> x = 2 hoặc x = 5/2

Vậy S = { 2 ; 5/2 }

c) x2 - 5x + 6 = 0

<=> x2 - 2x - 3x + 6 = 0

<=> x( x - 2 ) - 3( x - 2 ) = 0

<=> ( x - 2 )( x - 3 ) = 0

<=> x - 2 = 0 hoặc x - 3 = 0

<=> x = 2 hoặc x = 3

17 tháng 8 2020

a, \(12-2\left(1-x\right)^2=\left(3x-2\right)\left(2x-3\right)\)

\(< =>12-2\left(1-2x+x^2\right)=6x^2-9x-4x+6\)

\(< =>12-2+4x-2x^2=6x^2-13x+6\)

\(< =>10+4x-2x^2-6x^2+13x-6=0\)

\(< =>-8x^2+17x+4=0< =>\orbr{\begin{cases}x=\frac{17-\sqrt{417}}{16}\\x=\frac{17+\sqrt{417}}{16}\end{cases}}\)

b, \(10x+3-5x=4x+12< =>5x+3-4x-12=0\)

\(< =>x-9=0< =>x=9\)

c, \(11x+42-2x=100-9x-22< =>9x+42-100+9x+22=0\)

\(< =>18x+64-100=0< =>18x-36=0< =>x=\frac{36}{18}=2\)

d, \(2x-\left(3-5x\right)=4\left(x+3\right)< =>2x-3+5x=4x+12\)

\(< =>7x-3-4x-12=0< =>3x-15=0< =>x=\frac{15}{3}=5\)

e, \(2\left(x-3\right)+5x\left(x-1\right)=5x^2< =>2x-6+5x^2-5=5x^2\)

\(< =>2x-11+5x^2-5x^2=0< =>2x-11=0< =>x=\frac{11}{2}\)

f, \(-6\left(1,5-2x\right)=3\left(-15+2x\right)< =>-6\left(\frac{3}{2}-2x\right)=3\left(2x-15\right)\)

\(< =>-9+12x-6x+45=0< =>6x+36=0< =>x=-6\)

g, \(14x-\left(2x+7\right)=3x+12x-13< =>14x-2x-7=15x-13\)

\(< =>12x-7-15x+13=0< =>-3x+6=0< =>x=-2\)

h, \(\left(x-4\right)\left(x+4\right)-2\left(3x-2\right)=\left(x-4\right)^2\)

\(< =>x^2-16-6x+4=x^2-8x+16\)

\(< =>x^2-6x-12-x^2+8x-16=0\)

\(< =>2x-28=0< =>x=\frac{28}{2}=14\)

q, \(4\left(x-2\right)-\left(x-3\right)\left(2x-5\right)=?\)thiếu đề

26 tháng 1 2021

2x - ( 3 - 5x ) = 4( x + 3 )

<=> 2x - 3 + 5x = 4x + 12

<=> 7x - 4x = 12 + 3

<=> 3x = 15

<=> x = 5 

Vậy phương trình có nghiệm x = 5

5( x - 3 ) - 4 = 2( x - 1 ) + 7

<=> 5x - 15 - 4 = 2x - 2 + 7

<=> 5x - 2x = 5 + 19

<=> 3x = 24

<=> x = 8

Vậy phương trình có nghiệm x = 8

NM
26 tháng 1 2021

ta có 

\(2x-\left(3-5x\right)=4\left(x+3\right)\Leftrightarrow2x-3+5x=4x+12\)

\(\Leftrightarrow3x=15\Leftrightarrow x=5\)

câu b.

\(5\left(x-3\right)-4=2\left(x-1\right)+7\Leftrightarrow5x-15-4=2x-2+7\)

\(\Leftrightarrow3x=14\Leftrightarrow x=\frac{14}{3}\)

8 tháng 7 2017

\(1.\left(x-2\right)\left(x-1\right)=x\left(2x+1\right)+2\)

\(\Leftrightarrow x^2-3x+2=2x^2+x+2\)

\(\Leftrightarrow x^2-2x^2-3x-x=-2+2\)

\(\Leftrightarrow-x^2-4x=0\)

\(\Leftrightarrow x\left(-x-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\-x-4=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-4\end{cases}}\)Vậy S={-4;0}

\(2.\left(x+2\right)\left(x+2\right)-\left(x-2\right)\left(x-2\right)=8x\)

\(\Leftrightarrow\left(x+2\right)^2-\left(x-2\right)^2-8x=0\)

\(\Leftrightarrow x^2+4x+4-\left(x^2-4x+4\right)-8x=0\)

\(\Leftrightarrow x^2+4x+4-x^2+4x-4-8x=0\)

\(\Leftrightarrow0=0\)(luôn đúng vs mọi giá trị của x)

\(3.\left(2x-1\right)\left(x^3-x+1\right)=2x^3-3x^2+16=0\)

\(\Leftrightarrow2x^4-2x^2+2x-x^3+x-1=2x^3-3x^2+16=0\)

\(\Leftrightarrow2x^4-x^3-2x^2+3x-1=2x^3-3x^2+16=0\)

\(\Leftrightarrow2x^4-x^3-2x^3-2x^2+3x^2+3x-1-16=0\)

\(\Leftrightarrow2x^4-3x^3+x^2+3x-17=0\)

Cái này là phương trình bậc 4 lận, Giải hơi mất thời gian

3 tháng 5 2021

=) vào ngay quả bảng phá dấu GTTĐ, cay thế :< 

a, \(3x+\frac{2x}{3}-3=\frac{5}{2}x-2\Leftrightarrow\frac{18x+4x-18}{6}=\frac{15x-12}{6}\)

\(\Rightarrow22x-18=15x-12\Leftrightarrow7x=6\Leftrightarrow x=\frac{6}{7}\)

Vậy pt có nghiệm x = 6/7 

b, \(\frac{3\left(2x+1\right)}{4}-\frac{5x+3}{6}+\frac{x+1}{3}=\frac{x+7}{12}\)

\(\Leftrightarrow\frac{9\left(2x+1\right)-2\left(5x+3\right)+4\left(x+1\right)}{12}=\frac{x+7}{12}\)

\(\Rightarrow18x+9-10x-6+4x+4=x+7\)

\(\Leftrightarrow12x+7=x+7\Leftrightarrow11x=0\Leftrightarrow x=0\)

Vậy pt có nghiệm là x = 0 

c, \(\frac{3x}{x-3}-\frac{x-3}{x+3}=2\)ĐK : \(x\ne\pm3\)

\(\Leftrightarrow\frac{3x\left(x+3\right)-\left(x-3\right)^2}{\left(x-3\right)\left(x+3\right)}=\frac{2\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\)

\(\Rightarrow3x^2+9x-x^2+6x-9=2\left(x^2-9\right)\)

\(\Leftrightarrow2x^2+15x-9=2x^2-18\Leftrightarrow15x+9=0\Leftrightarrow x=-\frac{9}{15}=-\frac{3}{5}\)

Vậy pt có nghiệm là x = -3/5 

d, Sửa đề :  \(\frac{x+10}{2003}+\frac{x+6}{2007}+\frac{x+2}{2011}+3=0\)

\(\Leftrightarrow\frac{x+10}{2003}+1+\frac{x+6}{2007}+1+\frac{x+2}{2011}+1=0\)

\(\Leftrightarrow\frac{x+2013}{2003}+\frac{x+2013}{2007}+\frac{x+2013}{2011}=0\)

\(\Leftrightarrow\left(x+2013\right)\left(\frac{1}{2003}+\frac{1}{2007}+\frac{1}{2011}\ne0\right)=0\Leftrightarrow x=-2013\)

Vậy pt có nghiệm là x = -2013 

3 tháng 5 2021

e, \(4\left(x+5\right)-3\left|2x-1\right|=10\)

\(\Leftrightarrow4x+20-3\left|2x-1\right|=10\Leftrightarrow-3\left|2x-1\right|=-10-4x\)

\(\Leftrightarrow\left|2x-1\right|=\frac{10+4x}{3}\)

ĐK : \(\frac{10+4x}{3}\ge0\Leftrightarrow10+4x\ge0\Leftrightarrow x\ge-\frac{10}{4}=-\frac{5}{2}\)

TH1 : \(2x-1=\frac{10+4x}{3}\Rightarrow6x-3=10+4x\Leftrightarrow2x=13\Leftrightarrow x=\frac{13}{2}\)( tm )

TH2 : \(2x-1=\frac{-10-4x}{3}\Rightarrow6x-3=-10-4x\Leftrightarrow10x=-7\Leftrightarrow x=-\frac{7}{10}\)( tm )

f, để mình xem lại đã, quên cách phá GTTĐ rồi :v :> 

20 tháng 2 2020

\(\left(3x-2\right)^2-4x\left(x-3\right)=\left(5x+1\right)\left(x-4\right).\)

\(\Leftrightarrow9x^2-12x+4-4x^2+12x=5x^2-20x+x-4\)

\(\Leftrightarrow9x^2-12x+4-4x^2+12x=5x^2-20x+x-4\)

\(\Leftrightarrow19x=-8\)

\(\Rightarrow x=-\frac{8}{19}\)

\(\left(x+3\right)\left(3x-1\right)=9x^2-1\)

\(\Leftrightarrow\left(x+3\right)\left(3x-1\right)=\left(3x-1\right)\left(3x+1\right)\)

\(\Leftrightarrow\left(x+3\right)\left(3x-1\right)-\left(3x-1\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(x+3-3x-1\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(2-2x\right)=0\)

Th1 : 3x - 1 = 0

=> x = 1/3

Th2: 2 - 2x = 0

=> x = 1

8 tháng 2 2020

\(2.\left(x+3\right)\left(x+5\right)+\left(x+3\right)\left(3x-4\right)=0\\ \Leftrightarrow x^2+5x+3x+15+3x^2-4x+9x-12=0\\ \Leftrightarrow x^2+3x^2+5x+3x-4x+9x+15-12=0\\\Leftrightarrow 4x^2+13x+3=0\\\Leftrightarrow 4\left(x^2+\frac{13}{4}x+\frac{3}{4}\right)=0\\\Leftrightarrow x^2+\frac{13}{4}x+\frac{3}{4}=0\\ \Leftrightarrow x^2+\frac{1}{4}x+3x+\frac{3}{4}=0\\\Leftrightarrow x\left(x+\frac{1}{4}\right)+3\left(x+\frac{1}{4}\right)=0\\\Leftrightarrow \left(x+3\right)\left(x+\frac{1}{4}\right)=0\\\Leftrightarrow \left[{}\begin{matrix}x+3=0\\x+\frac{1}{4}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-3\\x=-\frac{1}{4}\end{matrix}\right.\)

Vậy tập nghiệm của phương trình trên là: \(S=\left\{-3;-\frac{1}{4}\right\}\)

8 tháng 2 2020

\(3.\left(x+6\right)\left(3x-1\right)+x+6=0\\ \Leftrightarrow3x^2-x+18x-6+x+6=0\\ \Leftrightarrow3x^2+18x=0\\ \Leftrightarrow3x\left(x+6\right)=0\\\Leftrightarrow \left[{}\begin{matrix}3x=0\\x+6=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-6\end{matrix}\right.\)

Vậy tập nghiệm của phương trình trên là \(S=\left\{0;-6\right\}\)

20 tháng 3 2020

Ta có: 5x + 3x2 = 0 

<=> x(3x + 5) = 0

<=> \(\orbr{\begin{cases}x=0\\3x+5=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=0\\x=-\frac{5}{3}\end{cases}}\) Vậy S = {0; -5/3)

5(x2 - 2x) = (3 + 5x)(x - 1)

<=> 5x2 - 10x = 5x2 - 2x - 3

<=> 5x2 - 10x - 5x2 + 2x = -3

<=> -8x = -3

<=> x = 3/8 Vậy S = {3/8}

(4x + 3)2 = 4(x - 1)2

<=> (4x + 3)2 - (2x - 2)2 = 0

<=> (4x + 3 - 2x + 2)(4x +3 + 2x - 2) = 0

<=> (2x + 5)(6x + 1) = 0

<=> \(\orbr{\begin{cases}2x+5=0\\6x+1=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-\frac{5}{2}\\x=-\frac{1}{6}\end{cases}}\)  Vậy S = {-5/3; -1/6}

20 tháng 3 2020

a) 5x + 3.x2 = 0

<=>x . ( 5 + 3x ) = 0

<=> \(\orbr{\begin{cases}x=0\\5+3.x=0\end{cases}}\)

<=>\(\orbr{\begin{cases}x=0\\z=-\frac{5}{3}\end{cases}}\)

Nghiệm cuối cùng là :{ 0;\(-\frac{5}{3}\)}

b) 5.( x2 - 2.x ) = ( 3 + 5.x ) . ( x- 1 )

<=>5.x2 - 10.x = 3.x -3 + 5.x2 - 5.x

<=> -10.x         = 3.x - 3-5.x 

<=> -10.x        = -2.x - 3

<=> -8.x          = -3

<=> x              = \(\frac{3}{8}\)

Vậy x = \(\frac{3}{8}\)

c) ( 4x + 3 )2 = 4. ( x - 1 )2 

<=> 16.x2 + 24.x + 9 = 4.( x2 -2.x + 1 )

<=> 16.x2+24.x + 9  = 4.x2 -8.x + 4

<=> 16.x2 +24.x + 9 -4.x2 + 8.x - 4= 0

<=> 12.x2 + 32.x + 5  = 0

<=> 12.x2 + 30.x + 2.x + 5 = 0

<=> 6.x . ( 2.x + 5 ) + 2.x + 5 =0

<=> ( 2.x + 5 ) . ( 6.x + 1 ) =0

<=> \(\orbr{\begin{cases}2.x+5=0\\6.x+1=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-\frac{5}{2}\\x=-\frac{1}{6}\end{cases}}\)

Nghiệm cuối cùng là : { \(-\frac{5}{2};-\frac{1}{6}\)}