Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-2x2 - x - 2 > 0
=> -2x2 - x - 2 = 0
=> x không € R
-2x2 - x - 2 > 0, a = -2
=> x € tập hợp rỗng
x 1-x 2x+1 3-2x Tích số -1/2 1 3/2 0 0 0 0 0 0 + + - - - + + + + + + - - + - +
Vậy , nghiệm của BPT : −12<x<1−12<x<1 hoặc : x > 3232
-2x2 - x - 2 > 0
=> -2x2 - x - 2 = 0
=> x không € R
-2x2 - x - 2 > 0, a = -2
=> x € tập hợp rỗng
c.
Tập xác định của phương trình
2
Lời giải bằng phương pháp phân tích thành nhân tử
3
Sử dụng phép biến đổi sau
4
Giải phương trình
5
Đơn giản biểu thức
6
Giải phương trình
7
Đơn giản biểu thức
8
Giải phương trình
9
Giải phương trình
10
Đơn giản biểu thức
11
Giải phương trình
12
Đơn giản biểu thức
13
Lời giải thu được
a,
Tập xác định của phương trình
2
Lời giải bằng phương pháp phân tích thành nhân tử
3
Sử dụng phép biến đổi sau
4
Giải phương trình
5
Đơn giản biểu thức
6
Giải phương trình
7
Đơn giản biểu thức
8
Giải phương trình
9
Đơn giản biểu thức
10
Lời giải thu được
Với dạng bài này ta chỉ việc chia hoocne là ra nhé!
\(C1:x^4+x^3-8x^2-9x-9=0\\ \Leftrightarrow\left(x-3\right)\left(x^3+4x^2+4x+3\right)\\ \Leftrightarrow\left(x-3\right)\left(x+3\right)\left(x^2+x+1\right)\\ \Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+3=0\\x^2+x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\\x^2+x+1=0\left(VN\right)\end{matrix}\right.\)
\(C2:x^4+2x^3-3x^2-8x-4=0\\ \Leftrightarrow\left(x+1\right)\left(x^3+x^2-4x-4\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x+1\right)\left(x^2-4\right)=0\\ \Leftrightarrow\left(x+1\right)^2\left(x^2-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\left(x+1\right)^2=0\\x^2-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-2\end{matrix}\right.\)
\(\Leftrightarrow x^4\left(x-1\right)-4x^3\left(x-1\right)+4x\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^4-4x^3+4x-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[x^3\left(x-1\right)-3x^2\left(x-1\right)-3x\left(x-1\right)+\left(x-1\right)\right]\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x^3-3x^2-3x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left[\left(x+1\right)\left(x^2-x+1\right)-3x\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x+1\right)\left(x^2-4x+1\right)=0\)
- Khi x - 1 = 0 thì x = 1
- Khi x + 1 = 0 thì x = -1
- Khi \(x^2-4x+1=0\Leftrightarrow\left(x-2\right)^2=3\Leftrightarrow\orbr{\begin{cases}x=\sqrt{3}+2\\x=-\sqrt{3}+2\end{cases}}\)
Pt có tậo nghiệm là: \(S=\left\{1;-1;\sqrt{3}+2;-\sqrt{3}+2\right\}\)
giai phuong trinh
1, (x-2)(x-1)(x-8)(x-4)=4x^2
2, (x^2+5x+6)(x^2+20x+96)=4x^2
3, 3(x^2+2x-1)^2-2(x^2+3x-1)^2+5x^2=0
\(\left(5x-\frac{2}{3}\right)-\frac{2x^2-x}{2}\ge\frac{x\left(1-3x\right)}{3}-\frac{5x}{4}\)
<=> \(\frac{60x-8-6\left(2x^2-x\right)}{12}\ge\frac{4x\left(1-3x\right)-15x}{12}\)
<=> \(60x-8-12x^2+6x\ge4x-12x^2-15x\)
<=> \(47x\ge8\)
<=> \(x\ge\frac{8}{47}\)
\(a,\left(x-2\right)^2-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=15\)\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6\left(x^2+2x+1\right)=15\)\(\Leftrightarrow-6x^2+12x+19+6x^2+12x+6=15\)
\(\Leftrightarrow24x=-10\)
\(\Leftrightarrow x=-\dfrac{5}{12}\)
Vậy:....
\(b,\left(5x+1\right)^2-\left(5x+3\right)\left(5x-3\right)=30\)
\(\Leftrightarrow25x^2+10x+1-25^2+9=30\)
\(\Leftrightarrow10x=20\)
\(\Rightarrow x=2\)
Vậy :....
\(c,\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-2\right)\left(x+2\right)=15\)\(\Leftrightarrow x^3+27-x\left(x^2-4\right)=15\)
\(\Leftrightarrow x^3+27-x^3+4x=15\)
\(\Leftrightarrow4x=15-27=-12\)
\(\Leftrightarrow x=-3\)
vậy : .....
\(x^4+9=5x\left(3-x^2\right)\)
\(\Leftrightarrow x^4+9=15x-5x^3\)
\(\Leftrightarrow x^4+5x^3-15x+9=0\)
\(\Leftrightarrow x^4-x^3+6x^3-6x^2+6x^2-6x-9x+9=0\)
\(\Leftrightarrow\left(x^4-x^3\right)+\left(6x^3-6x^2\right)+\left(6x^2-6x\right)-\left(9x-9\right)=0\)
\(\Leftrightarrow x^3\left(x-1\right)+6x^2\left(x-1\right)+6x\left(x-1\right)-9\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+6x^2+6x-9\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+3x^2+3x^2+9x-3x-9\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x+3\right)+3x\left(x+3\right)-3\left(x+3\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+3\right)\left(x^2+3x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+3=0\\x^2+3x-3=0\end{matrix}\right.\)
Ta có: \(x^2+3x-3=0\)
\(\Leftrightarrow x^2+2.x.\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{21}{4}=0\)
\(\Leftrightarrow\left(x+\dfrac{3}{2}\right)^2=\dfrac{21}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-3+\sqrt{21}}{2}\\x=\dfrac{-3-\sqrt{21}}{2}\end{matrix}\right.\)
Vậy: \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\\x=\dfrac{-3+\sqrt{21}}{2}\\x=\dfrac{-3-\sqrt{21}}{2}\end{matrix}\right.\)
Ta có:
\(x^3+5x^2+3x-9=0\)
\(\Leftrightarrow x^3+3x^2+2x^2+6x-3x-9=0\)
\(\Leftrightarrow x^2\left(x+3\right)+2x\left(x+3\right)-3\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2+2x-3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+3\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\\left(x+3\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
Vậy PT có nghiệm là \(\left\{1;-3\right\}\)