Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6) \(pt<=>x^4+4x^3+6x^2+4x+1=2x^4+2\)
<=> \(x^4-4x^3-6x^2-4x+1=0\)
dễ thẫy x = 0 không là nghiệm chia cả hai vế cho x^2
\(pt<=>x^2-4x-6-\frac{4}{x}+\frac{1}{x^2}=0\)
<=> \(x^2+\frac{1}{x^2}-4\left(x+\frac{1}{x}\right)-6=0\)
Đặt x + 1/x = t pt <=> \(t^2-2-4t-6=0\)
Giải pt ẩn t sau đó tìm x
Câu 1/
x4 + (x - 1)(x2 - 2x + 2) = 0
\(\Leftrightarrow\)x4 + x3 - 3x2 + 4x - 2 = 0
\(\Leftrightarrow\)(x4 - x3 + x2) + (2x3 - 2x2 + 2x) + (- 2x2 + 2x + 2) = 0
\(\Leftrightarrow\)(x2 - x + 1)(x2 + 2x - 2) = 0
Tới đây tự làm tiếp nhé.
Câu 2/ Đặt \(\hept{\begin{cases}\frac{x+1}{x-2}=a\\\frac{x-2}{x-4}=b\end{cases}}\)
Thì ta có pt
\(\Leftrightarrow\)a2 + ab - 12b2 = 0
\(\Leftrightarrow\)(a2 - 3ab) + (4ab - 12b2) = 0
\(\Leftrightarrow\)(a - 3b)(a + 4b) = 0
Tự làm phần còn lại nhé.
a,x4-10x2+9=0
=>(x-1)(x3+x2-9x-9)=0
=> (x-1)(x+1)(x-3)(x+3)=0
=>\(\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}}\)hoặc\(\orbr{\begin{cases}x-3=0\\x+3=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=\pm1\\x=\pm3\end{cases}}\)
Vậy tập nghiệm cuả pt là S={\(\pm1,\pm3\)}
Đặt \(u=\sqrt{10-x};v=\sqrt{3+x}\)
Phương trình trở thành \(u+v+2uv=17\)
\(\Rightarrow u+v=\sqrt{17}\)
đến đây thì EZ rồi
f) ĐKXĐ: \(x\ge-\frac{3}{2}\)
Khi đó VT > 0 nên \(VT>0\Rightarrow\left[{}\begin{matrix}x\ge2\\x\le-3\left(L\right)\end{matrix}\right.\)
Lũy thừa 6 cả 2 vế lên PT tương đương:
\( \left( x-3 \right) \left( {x}^{11}+9\,{x}^{10}+6\,{x}^{9}-142\,{x}^{ 8}-231\,{x}^{7}+1113\,{x}^{6}+2080\,{x}^{5}-4604\,{x}^{4}-6908\,{x}^{3 }+13222\,{x}^{2}+10983\,x-15327 \right) =0\)
Cái ngoặc to vô nghiệm vì nó tương đương:
\(\left( x-2 \right) ^{11}+31\, \left( x-2 \right) ^{10}+406\, \left( x -2 \right) ^{9}+2906\, \left( x-2 \right) ^{8}+12281\, \left( x-2 \right) ^{7}+31031\, \left( x-2 \right) ^{6}+46656\, \left( x-2 \right) ^{5}+46648\, \left( x-2 \right) ^{4}+46452\, \left( x-2 \right) ^{3}+44590\, \left( x-2 \right) ^{2}+36015\,x-55223 = 0\)(vô nghiệm với mọi \(x\ge2\))
Vậy x = 3.
PS: Nghiệm đẹp thế này chắc có cách AM-Gm độc đáo nhưng mình chưa nghĩ ra
@Akai Haruma, @Nguyễn Việt Lâm
giúp em vs ạ! Cần gấp ạ
em cảm ơn nhiều!
\(\frac{x^2}{\left(x+2\right)}=3x^2-6x-3,x\ne-2\)
\(\Rightarrow x^2=\left(3x^2-6x-3\right)\left(x+2\right)^2\)
\(\Rightarrow x^2-\left(3x^2-6x-3\right)\left(x+2\right)^2=0\)
\(\Rightarrow x^2-\left(3x^4+12x^3+12x^2-6x^3-24x^2-24x-3x^2-12x-12\right)=0\)
\(\Rightarrow x^2-\left(3x^4+6x^3-15x^2-36x-12\right)=0\)
\(\Rightarrow16x^2-3x^4-6x^3+36x+12=0\)
\(\Rightarrow-2x^2+18x^2-3x^4-6x^3+36x+12=0\)
\(\Rightarrow-x^2\left(3x^2+6x+2\right)+\left(3x^2+6x+2\right)=0\)
\(\Rightarrow-\left(3x^2+6x+2\right)\left(x^2-6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}-\left(3x^2+6x=2\right)=0\\x^2-6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\frac{-3+\sqrt{3}}{3}\\\frac{-3-\sqrt{3}}{3},x\ne-2\\x=-\sqrt{6}\\x=\sqrt{6}\end{matrix}\right.\)
\(\Leftrightarrow x-16+\sqrt{x-15}-1=0\)0
\(\Leftrightarrow x-16+\frac{x-16}{\sqrt{x-15}+1}\)= 0
\(\Leftrightarrow\left(x-16\right)\cdot\left(1+\frac{1}{\sqrt{x-15}+1}\right)\)=0
\(\text{a) }10\left(\frac{x-2}{x+1}\right)^2+\left(\frac{x+2}{x-1}\right)^2-11\frac{x^2-4}{x^2-1}=0\\ DKXD:x\ne-1;x\ne1\\ \Leftrightarrow10\left(\frac{x-2}{x+1}\right)^2+\left(\frac{x+2}{x-1}\right)^2-11\frac{\left(x+2\right)\left(x-2\right)}{\left(x+1\right)\left(x-1\right)}=0\)
Đặt \(\frac{x-2}{x+1}=a;\frac{x+2}{x-1}=b\)
\(Pt\Leftrightarrow10a^2+b^2-11ab=0\\ \Leftrightarrow10a^2-10ab-ab+b^2=0\\ \Leftrightarrow10a\left(a-b\right)-b\left(a-b\right)=0\\ \Leftrightarrow\left(10a-b\right)\left(a-b\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}10a-b=0\\a-b=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}10a=b\\a=b\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\frac{10\left(x-2\right)}{x+1}=\frac{x+2}{x-1}\left(1\right)\\\frac{x-2}{x+1}=\frac{x+2}{x-1}\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow10\left(x-2\right)\left(x-1\right)=\left(x+1\right)\left(x+2\right)\\ \Leftrightarrow10\left(x^2-3x+2\right)=x^2+3x+2\\ \Leftrightarrow9x^2-33x+18=0\\ \Leftrightarrow9x^2-27x-6x+18=0\\ \Leftrightarrow9x\left(x-3\right)-6\left(x-3\right)=0\\ \Leftrightarrow\left(9x-6\right)\left(x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-3=0\\9x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\frac{2}{3}\end{matrix}\right.\left(Tm\right)\)
\(\left(2\right)\Leftrightarrow\left(x-2\right)\left(x-1\right)=\left(x+1\right)\left(x+2\right)\\ \Leftrightarrow x^2-3x+2=x^2+3x+2=0\\ \Leftrightarrow6x=0\\ \Leftrightarrow x=0\left(Tm\right)\)
Vậy pt có tập nghiệm \(S=\left\{0;3;\frac{2}{3}\right\}\)
\(\text{b) }\left(\frac{x+1}{x-2}\right)^2+\frac{x+1}{x-4}=12\left(\frac{x-2}{x-4}\right)^2\\ DKXD:x\ne2;x\ne4\\ \Leftrightarrow\left(\frac{x+1}{x-2}\right)^2+\frac{x+1}{x-2}\cdot\frac{x-2}{x-4}-12\left(\frac{x-2}{x-4}\right)^2=0\)
Đặt \(\frac{x+1}{x-2}=a;\frac{x-2}{x-4}=b\)
\(Pt\Leftrightarrow a^2+ab-12b^2=0\\ \Leftrightarrow a^2+4ab-3ab-12b^2=0\\ \Leftrightarrow a\left(a+4b\right)-3b\left(a+4b\right)=0\\ \Leftrightarrow\left(a-3b\right)\left(a+4b\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a-3b=0\\a+4b=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=3b\\a=-4b\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\frac{x+1}{x-2}=\frac{3\left(x-2\right)}{x-4}\left(1\right)\\\frac{x+1}{x-2}=\frac{-4\left(x-2\right)}{x-4}\left(2\right)\end{matrix}\right.\)
Tự giải tiếp nha.