Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(x^2-4xy=23\)
\(\Leftrightarrow x\left(x-4y\right)=23\)
Ta co:
\(23=1.23=23.1=\left(-1\right).\left(-23\right)=\left(-23\right).\left(-1\right)\)
TH1:
\(\left\{{}\begin{matrix}x=1\\x-4y=23\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-\frac{11}{2}\end{matrix}\right.\)(loai)
TH2:
\(\left\{{}\begin{matrix}x=23\\x-4y=1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x=23\\y=\frac{11}{2}\end{matrix}\right.\)(loai)
TH3:
\(\left\{{}\begin{matrix}x=-1\\x-4y=-23\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=\frac{11}{2}\end{matrix}\right.\)(loai)
TH4:
\(\left\{{}\begin{matrix}x=-23\\x-4y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-23\\y=-\frac{11}{2}\end{matrix}\right.\)(loai)
Vay khong co ngiem nguyen nao thoa man phuong trinh
\(8x^2-7x+13=y\left(x-1\right)^2\)
\(\Leftrightarrow\left(8x^2-8x\right)+\left(x-1\right)+14-\left(x-1\right)\left(xy-y\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(8x+1-xy+y\right)=-14\)
Đến đây xét từng trường hợp ước của -14 là ra. Bạn tự làm tiếp nhé
a) Để phương trình có nghiệm kép thì \(\Delta=0\)
<=> \(m^2-4=0\)
<=> \(\orbr{\begin{cases}m=2\\m=-2\end{cases}}\)
+) Với m = 2 thì phương trình có nghiệm kép là (-1)
+) Với m = -2 thì phương trình có nghiệm kép là (1)
b) Có : \(\Delta=b^2-4ac=9-4.2.\left(-5\right)=49>0\)
Suy ra phương trình có 2 nghiệm phân biệt (x1;x2) là (5/2;-1)
Bạn ơi mình chưa học cài này nha
mong bạn thông cảm
thanks
a)Ta có: 5x+7y=112
\(\Rightarrow x=\frac{112-7y}{5}=22-y+\frac{2-2y}{5}\)
Do x,y nguyên \(\Rightarrow\frac{2-2y}{5}\)nguyên hay (2-2y) chia hết 5 <=>2(1-y) chia hết 5;(2,5)=1
=>(1-y) chia hết 5 hay (y-1) chia hết 5.Đặt y-1=5t \(\left(t\in Z\right)\)
\(\Rightarrow y=5t+1\)
Thay y vào x ta có:x=21-7t
Lại có x>0;y>0 \(\Rightarrow\hept{\begin{cases}5t+1>0\\21-7t>0\end{cases}\Rightarrow}\hept{\begin{cases}t>-\frac{1}{5}\\t< 3\end{cases}}\)
\(\Rightarrow t=\left\{0;1;2\right\}\)
a)5x+7y=112
tách ra các giá trị nguyên
tìm 1 nghiệm riêng