K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2018

Ta có : x2 - xy = 7x - 2y - 15 
<=> x2 -xy - 7x + 2y + 15 = 0
phân tích đến đoạn này thì chắc chắn ta phải tách để ra dc nhân tử chung có dạng ( x + n ), mà chỉ có 2 cái -xy và 2y là có y 
<=> x2 - 2x - 5x + 10 - xy + 2y  = -5
<=> x.(x-2 ) -5.( x -2 ) -y. ( x-2) = -5
<=> ( x-2 ) ( x - 5 - y ) = -5 
vì - 5 = ( -5) .1 = 5.( -1 ) . Ta xét 2 trường hợp rồi từ đó tìm dc giả trị x,y tương ứng ! 

12 tháng 3 2016

thông điệp nhỏ:

hay kkhi ko muốn k

24 tháng 8 2017

>>>>x^2-(2y^2+1-y)x+2y^2-y-1=0

>>>>delta=(2y^2+1-y)^2-4(2y^2-y-1) (tự tính nha bn)

có kq>>>để pt có no nguyên>>>>delta là sôc chính phương>>>xong

\(x^2y+xy-x=4\)

\(\Leftrightarrow xy\left(x+1\right)-x-1=3\)

\(\Leftrightarrow xy\left(x+1\right)-\left(x+1\right)=3\)

\(\Leftrightarrow\left(xy-1\right)\left(x+1\right)=3\)

TH1:

\(\Leftrightarrow\hept{\begin{cases}xy-1=3\\x+1=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}xy=4\\x=0\end{cases}}\)

-> hệ phương trình vô nghiệm

TH2:

\(\Leftrightarrow\hept{\begin{cases}xy-1=1\\x+1=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2y=2\\x=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=1\\x=2\end{cases}}\)

TH3:

\(\Leftrightarrow\hept{\begin{cases}xy-1=-3\\x+1=-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-2y=-2\\x=-2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=1\\x=-2\end{cases}}\)

TH4:

\(\Leftrightarrow\hept{\begin{cases}xy-1=-1\\x+1=-3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-4y=0\\x=-4\end{cases}}\)

hệ pt vô nghiệm

vậy pt có tập nghiệm (x;y)={(1;2);(1;-2)}

6 tháng 11 2019

a. \(x\left(x^2+x+1\right)=4y\left(y+1\right)\)

<=> \(x^3+x^2+x+1=4y^2+4y+1\)

<=> \(\left(x+1\right)\left(x^2+1\right)=\left(2y+1\right)^2\)là một số chính phương lẻ

=> \(x+1;x^2+1\) là 2 số lẻ (1)

Chứng minh: \(\left(x+1;x^2+1\right)=1\)

Đặt: \(\left(x+1;x^2+1\right)=d\)

=> \(\hept{\begin{cases}x-1⋮d\\x^2+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}x^2-1⋮d\\x^2+1⋮d\end{cases}}}\)

=> \(\left(x^2+1\right)-\left(x^2-1\right)⋮d\)

=> \(2⋮d\)(2)

Từ (1) => d lẻ ( 3)

(2); (3) => d =1

Vậy  \(\left(x+1;x^2+1\right)=1\)

Có  \(\left(x+1\right)\left(x^2+1\right)\) là số chính phương

Từ  2 điều trên => \(\left(x+1\right),\left(x^2+1\right)\) là 2 số chính phương

Mặt khác \(x^2\) là số chính phương

Do đó: x = 0

Khi đó: \(4y\left(y+1\right)=0\Leftrightarrow\orbr{\begin{cases}y=0\\y=-1\end{cases}}\)

Vậy phương trình có nghiệm ( x; y) là ( 0; 0) hoặc (0; -1)

8 tháng 5 2018

chuyển vế ta có:

\(x^2-2xy+2y^2-2x-1=x^2-2x\left(y+1\right)+2y^2-1\)

tinh penta ta có:

\(penta'=\left(y+1\right)^2-\left(2y^2-1\right)=-y^2+2y+2=-\left(y+1\right)^2+3\)

để pt có nghiệm nguyên thi penta' phai lon hon hoac bang 0

co penta' nho hon hoac bang 3

từ 2 điều trên ta có: 0 nho hon hoac bang penta' <3

theo penta' ta có \(x_1=y+1-\sqrt{-\left(y+1\right)^2+3}\)

\(x_2=y+1+\sqrt{-\left(y+1\right)^2+3}\)\

mà x nguyên, y nguyên nên ta có: 

\(\sqrt{-\left(y+1\right)^2+3}thuocZ\) =>\(-\left(y+1\right)^2+3\) la SCP

ma 0 nho hon hoac bang \(-\left(y+1\right)^2+3\) <3

=>\(-\left(y+1\right)^2+3\) =0 hoặc =1

, nếu trường hợp nào cho cả 2 nghiệm x,y nguyên thì chọn

8 tháng 5 2018

PT\(\Leftrightarrow x^2-2xy+2y^2=2x+2\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+y^2-2x=2\)

\(\Leftrightarrow\left(x-y\right)^2-2\left(y-x\right)+1+y^2-2y+1=4\)

\(\Leftrightarrow\left(x-y-1\right)^2+\left(y-1\right)^2=4\)

Do x,y nguyên => Các hạng tử là số CP

Ta có các trường hợp 

(y-1)204
(x-y-1)240

+) (y-1)2=0 

=> y= 1 

=> x= 0 hoặc 4

+) (y-1)2=4

=> y= -1 hoặc 3

=> (x;y)= (2;-1);(4;3)