K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2019

x2 hay x3 vậy

14 tháng 7 2018

Câu a)

\(x^2-xy=6x-5y-8\Leftrightarrow x^2-xy-6x+5y+8=0\Leftrightarrow\left(x-5\right)\left(x-y-1\right)=-3\)

Đến đây bạn tự giải tiếp và tìm nghiệm nha!

Câu c)

\(7x^2=2013-12y^2\Rightarrow7x^2< 2013\Leftrightarrow x\le16\)

Đến đây ta nhận xét rằng vế trái lẻ và chia  hết cho 3. Vậy bạn chỉ cần thử 3 giá trị của x là 3, 9, 15
Hiện tại mình đang bận nên chưa tiện giải hết.
Khi nào mình giải tiếp nha!

6 tháng 9 2016

\(x^2+y^2=3-xy\)

\(\Leftrightarrow\left(x-y\right)^2=3\left(1-xy\right)\)

\(\Leftrightarrow x-y=3\) và \(1-xy=3\)

\(\Leftrightarrow\left(x;y\right)=\left(1;-2\right),\left(2;-1\right);\left(-1;2\right);\left(-2;1\right)\)

hoặc : \(x-y=0\) và \(1-xy=0\)

\(\Leftrightarrow\left(x;y\right)=\left(1;1\right)\left(-1;-1\right)\)

8 tháng 1 2017

ban oi tai sao den buoc 3 ban lai suy ra nhu vay duoc

2 tháng 2 2020

\(x^2-y^2+2x-4y-10=0\)

\(\Leftrightarrow x^2+2x+1-\left(y^2+y+9\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2-\left(y+2\right)^2-5=0\)

\(\Leftrightarrow\left(x+1\right)^2-\left(y+1\right)^2=5\)

\(\Leftrightarrow\left(x+1+y+2\right)\left(x+1+y-2\right)=5\)

\(\Leftrightarrow\left(x+y+1+2\right)\left(x-y-2-1\right)=5\)

\(\Leftrightarrow\left(x+y+3\right)\left(x-y-1\right)=5\)

Ta có bảng GT:

x+y+315-1-5
x-y-151-5-1
x22-4-4
y-400-4

Vậy (x,y)= (2;4) (2;0) (4;0);(-4;4)

x,y nguyên dương là:

=> Nghiệm của nguyên dương PT là: (x,y)=(2,0)

15 tháng 6 2019

#)Giải :

VD1:

Với \(\orbr{\begin{cases}x>0\\x< -1\end{cases}}\)ta có :

\(x^3< x^3+x^2+x+1< \left(x+1\right)^3\)

\(\Rightarrow x^3< y^3< \left(x+1\right)^3\)( không thỏa mãn )

\(\Rightarrow-1\le x\le0\)

Mà \(x\in Z\Rightarrow x\in\left\{-1;0\right\}\)

Với \(\orbr{\begin{cases}x=-1\\x=0\end{cases}\Rightarrow\orbr{\begin{cases}y=0\\y=1\end{cases}}}\)

Vậy...........................

15 tháng 6 2019

#)Giải :

VD2:

\(x^4-y^4+z^4+2x^2z^2+3x^2+4z^2+1=0\)

\(\Leftrightarrow y^4=x^4+z^4+2x^2z^2+3x^2+4z^2+1\)

\(\Leftrightarrow y^4=\left(x^2+y^2\right)+3x^2+4z^2+1\)

Ta dễ nhận thấy : \(\left(x^2+y^2\right)^2< y^4< \left(x^2+y^2+2\right)^2\)

Do đó \(y^4=\left(x^2+y^2+1\right)^2\)

Thay vào phương trình, ta suy ra được \(x=z=0\)

\(\Rightarrow y=\pm1\)

4 tháng 2 2017

coi như ẩn x

\(\left(2x+y\right)^2+3y^2=12\)

=> !y!<=2

vai trò x, y như nhau

với  y=0=> vô nghiệm nguyên 

với y=-1=> x=2

với y=1=> x=-2

(x,y)=(-2,1);(2,-1);(1,-2);(-1,2)

4 tháng 2 2017

cái !y! là dấu GTTĐ à?