K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TT
0
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NV
0
M
0
14 tháng 2 2017
Ta có:
\(\sqrt{x^2+\frac{1}{y^2}}+\sqrt{y^2+\frac{1}{z^2}}+\sqrt{z^2+\frac{1}{x^2}}\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\)
TA
1
21 tháng 2 2020
Xét (1/x+1/y+1/z)^2=1/x^2+1/y^2+1/z^2+2/xy+2/yz+2/xz
=P+2/xy+2/yz+2/xz=P+(2z+2x+2y)/xyz=P+2(x+y+z)/x+y+z=P+2
mà (1/x+1/y+1/z)^2=3
=>p=3-2=1