Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2+xy+y2=x2y2
\(\Leftrightarrow\left(y^2-1\right)x^2-xy-y^2=0\)(*)
Xét \(y^2=1\Leftrightarrow y=\pm1\)
- Với \(y=1\)thay vào (*) ta có: \(x=-1\)
- Với \(y=-1\)thay vào (*) ta có: \(x=1\)
Xét \(y\ne\pm1\) ta có: \(\Delta=y^2\left(4y^2-3\right)\) là 1 số chính phương
Đặt \(\left(2y\right)^2-3=n^2\left(n\in N\right)\)
\(\Leftrightarrow\left(2y\right)^2-n^2=3\)
\(\Leftrightarrow\left(\left|2y\right|-n\right)\left(\left|2y\right|+n\right)=3\)
Vì \(\left(\left|2y\right|+n\right)\in N;\left(\left|2y\right|-n\right)\in N\)\(\Rightarrow2y+n\ge\left|2y\right|-n\)
Ta có hệ \(\hept{\begin{cases}\left|2y\right|+n=3\\\left|2y\right|-n=1\end{cases}}\Leftrightarrow\left|2y\right|=2\Leftrightarrow y=\pm1\)
Không thỏa mãn vì \(y\ne\pm1\)
Vậy ta có nghiệm của pt \(\left(x;y\right)\in\left\{\left(0;0\right);\left(-1;-1\right);\left(-1;1\right)\right\}\)
>>>>x^2-(2y^2+1-y)x+2y^2-y-1=0
>>>>delta=(2y^2+1-y)^2-4(2y^2-y-1) (tự tính nha bn)
có kq>>>để pt có no nguyên>>>>delta là sôc chính phương>>>xong
\(pt\Leftrightarrow\left(x-1\right)\left(x-2y^2-y+2\right)=1\)
Ok ?!
\(x^2y+xy-x=4\)
\(\Leftrightarrow xy\left(x+1\right)-x-1=3\)
\(\Leftrightarrow xy\left(x+1\right)-\left(x+1\right)=3\)
\(\Leftrightarrow\left(xy-1\right)\left(x+1\right)=3\)
TH1:
\(\Leftrightarrow\hept{\begin{cases}xy-1=3\\x+1=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}xy=4\\x=0\end{cases}}\)
-> hệ phương trình vô nghiệm
TH2:
\(\Leftrightarrow\hept{\begin{cases}xy-1=1\\x+1=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2y=2\\x=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=1\\x=2\end{cases}}\)
TH3:
\(\Leftrightarrow\hept{\begin{cases}xy-1=-3\\x+1=-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-2y=-2\\x=-2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=1\\x=-2\end{cases}}\)
TH4:
\(\Leftrightarrow\hept{\begin{cases}xy-1=-1\\x+1=-3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-4y=0\\x=-4\end{cases}}\)
hệ pt vô nghiệm
vậy pt có tập nghiệm (x;y)={(1;2);(1;-2)}
\(PT\Leftrightarrow5x^2+x\left(5y-7\right)+5y^2-14y=0\)
\(\Delta=\left(5y-7\right)^2-4.5.\left(5y^2-14y\right)\)
\(=196-3\left(5y-7\right)^2\)
Để phương trình có nghiệm thì \(\Delta\ge0\Rightarrow\left(5y-7\right)^2\le65\)
Mặt khác \(5y-7\equiv3\left(mod5\right)\)
\(\Rightarrow\left(5y-7\right)^2\equiv4\left(mod5\right)\)
do đó \(\left(5y-7\right)^2\in\left\{4,9,14,19,24,29,34,39,44,49,54,59,64\right\}\)
mà (5y-7)2 là số chính phưng nên \(\left(5y-7\right)^2\in\left\{4,9,64\right\}\)
Từ đó tính ra
\(5\left(x^2+xy+y^2\right)=7\left(x+2y\right)\)
\(\Leftrightarrow5x^2+5xy+5y^2-7x-14y=0\)
\(\Leftrightarrow5x^2+x\left(5y-7\right)+5y^2-14y=0\)
\(\Rightarrow\Delta_x=\left(5y-7\right)^2-4\cdot5\cdot\left(5y^2-14y\right)\)
\(=-75y^2+210y+49\)
\(=196-3\left(25y^2-2\cdot5y\cdot7+79\right)\ge0\)
\(=196-3\left(5y-7\right)^2\ge0\)
Để phương trình có nghiệm nguyên thì \(\Delta_x\ge0\Leftrightarrow\left(5y-7\right)^2\le65\)
Nhận thấy \(5y-7\equiv3\left(mod5\right)\Rightarrow\left(5y-7\right)^2\equiv4\left(mod5\right)\)
Do đó \(\left(5y-7\right)^2\in\left\{4;9;14;19;24;29;34;39;44;49;54;59\right\}\)
Mà \(\left(5y-7\right)^2\)chinh phương nên \(\left(5y-7\right)^2\in\left\{4;9;49\right\}\)
Đến đây ta xét trường hợp là ra.
Ta có : x2 - xy = 7x - 2y - 15
<=> x2 -xy - 7x + 2y + 15 = 0
phân tích đến đoạn này thì chắc chắn ta phải tách để ra dc nhân tử chung có dạng ( x + n ), mà chỉ có 2 cái -xy và 2y là có y
<=> x2 - 2x - 5x + 10 - xy + 2y = -5
<=> x.(x-2 ) -5.( x -2 ) -y. ( x-2) = -5
<=> ( x-2 ) ( x - 5 - y ) = -5
vì - 5 = ( -5) .1 = 5.( -1 ) . Ta xét 2 trường hợp rồi từ đó tìm dc giả trị x,y tương ứng !