K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2020

\(9x^2+3y^2+6xy-6x+2y-35=0\)

\(\Leftrightarrow\left(9x^2+6xy+y^2\right)-2\left(3x+y\right)+1+2y^2+4y+2=38\)

\(\Leftrightarrow\left(3x+y-1\right)^2+2\left(y+1\right)^2=38\)(*)

\(\Rightarrow\left(3x+y-1\right)^2=38-2\left(y+1\right)^2\le38\)

\(\Rightarrow-\sqrt{38}\le3x+y-1\le\sqrt{38}\)

Từ (*) suy ra 3x + y - 1 chẵn mà 3x + y - 1 nguyên nên \(3x+y-1\in\left\{\pm6;\pm4;\pm2;0\right\}\)

* Nếu \(3x+y-1=\pm6\)thì \(2\left(y+1\right)^2=2\Rightarrow y+1=\pm1\Rightarrow\orbr{\begin{cases}y=-2\\y=0\end{cases}}\)

Th1: \(3x+y-1=6\)

+) \(y=-2\Rightarrow x=3\)

+) \(y=0\Rightarrow x=\frac{7}{3}\left(L\right)\)

Th2: \(3x+y-1=-6\)

+) \(y=-2\Rightarrow x=-1\)

+) \(y=0\Rightarrow x=\frac{-5}{3}\left(L\right)\)

* Nếu \(3x+y-1=\pm4\)thì \(2\left(y+1\right)^2=22\left(L\right)\)

* Nếu \(3x+y-1=\pm2\)thì \(2\left(y+1\right)^2=34\left(L\right)\)

* Nếu 3x + y - 1 = 0 thì \(2\left(y+1\right)^2=38\left(L\right)\)

Vậy phương trình có 2 cặp nghiệm nguyên \(\left(x,y\right)\in\left\{\left(3;-2\right);\left(-1;-2\right)\right\}\)

1 tháng 11 2017

Ta có x³- y³ - 2y² - 3y - 1= 0 

Hay x³ = y³ + 2y² + 3y + 1 bạn sử dụng pp đánh giá 

Do y² ≥ 0 nên y³ - 3y² + 3y - 1 < y³ + 2y² + 3y + 1 

và y³ + 2y² + 3y + 1 ≤ y³ + 3y² + 3y + 1 

( y - 1 )³ < x³ ≤ ( y + 1 )³ 

Nếu x³ = y³ tìm được nghiệm ( -1; -1 ) 

Nếu x³ = ( y + 1 )³ tìm được nghiệm ( 1; 0 )

1 tháng 11 2017
Chuyển vế y^3 sang.Dùng nguyên lí kẹp
14 tháng 11 2017

Ta có \(x^2+2xy+y^2+y^2=4-3y\)\(\Leftrightarrow\left(x+y\right)^2+y^2=4-3y\).
Suy ra \(4-3y>0\Leftrightarrow3y< 4\).
Do y nguyên dương nên \(y=1\).
Thay vào phương trình ta có: \(\left(x+1\right)^2+1^2=4-3.1\) \(\Leftrightarrow\left(x+1\right)^2=0\)\(\Leftrightarrow x+1=0\)\(\Leftrightarrow x=-1\). (Loại vì x nguyên dương).
Vậy không có giá trị nào của x thỏa mãn.

8 tháng 2 2019

\(x^2+2y^2+2xy+3y-4=0\)

\(\Leftrightarrow x^2+2xy+\left(2y^2+3y-4\right)=0\)

Coi phương trình trên có ẩn là x.

Phương trình có nghiệm khi \(\Delta'=y^2-\left(2y^2+3y-4\right)\ge0\)

\(\Leftrightarrow-y^2-3y+4\ge0\)\(\Leftrightarrow y^2+3y-4\le0\)

\(\Leftrightarrow\left(y-1\right)\left(y+4\right)\le0\Leftrightarrow-4\le y\le1\)

Thay vào từng giá trị nguyên của y để tìm x=)

DD
17 tháng 6 2021

\(2x^2-y^2+xy-3x+3y-3=0\)

\(\Leftrightarrow2x^2-xy+x+2xy-y^2+y-4x+2y-2=1\)

\(\Leftrightarrow\left(2x-y+1\right)\left(x+y-2\right)=1\)

Từ đây bạn xét bảng giá trị và thu được kết quả cuối cùng là: \(\left(x,y\right)=\left(1,2\right)\).

18 tháng 6 2021

Sao bạn suy ra hay vậy

13 tháng 7 2020

9x2 + 3y2 + 6xy - 6x + 2y - 35 = 0

<=> (9x2 + 6xy + y2) - 2(3x + y) + 1 + 2(y2 + 2y + 1) - 37 = 0

<=> (3x + y - 1)2 = 37 - 2(y + 1)2

Ta có: (3x + y - 1)2 \(\ge\)0 => 37 - 2(y + 1)2 \(\ge\)0

=> (y + 1)2 \(\le\)37/2

Do y nguyên và (y + 1)2 là số chính phương

=> (y + 1)2 \(\in\){0; 1; 4; 9; 16}

=> y + 1 \(\in\){0; 1; -1; 2; -2; 3; -3; 4; -4}

Lập bảng 

y + 1 0 1 -1 2 -2 3 -3 4 -4
 y -1 0 -2 1 -3 2 -4 3 -5

Với y = -1 => (3x - 1 - 1)2 = 37 - 2(-1 + 1)2

<=> (3x - 2)2 = 37 

Do x nguyên và (3x - 2)2 là số chính phương

mà 37 là số nguyên tố => ko có giá trị y tm

.... (tự thay y vào)

bài trc sai

3 tháng 6 2017

yx=98c99-23yx=0+35x6z6-y=a+b=6+2-3+35-9=31