K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2018
https://i.imgur.com/yw2PEGF.gif
23 tháng 8 2018

Ta có hpt \(\left\{{}\begin{matrix}xy+3y-5x-15=xy\\2xy+30x-y^2-15y=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}5x=3y-15\\6\left(3y-15\right)-y^2-15y=0\end{matrix}\right.\)

Ta có pt (2) \(\Leftrightarrow3y-y^2-80=0\Leftrightarrow y^2-3y+80=0\left(VN\right)\)

=> hpy vô nghiệm

23 tháng 8 2018

c) Ta có hpt \(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)\left(xy+x+y\right)=30\\xy\left(x+y\right)+xy+x+y=11\end{matrix}\right.\)

Đặt j\(xy\left(x+y\right)=a;xy+x+y=b\), ta có hpt

\(\left\{{}\begin{matrix}ab=30\\a+b=11\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}a=5;b=6\\a=6;b=5\end{matrix}\right.\)

với a=5;b=6, ta có \(\left\{{}\begin{matrix}xy\left(x+y\right)=5\\xy+x+y=6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}xy=1;x+y=5\\xy=5;x+y=1\end{matrix}\right.\)

đến đây thì thế y hoặc x ra pt bậc 2, còn TH còn lại bn tự giải nhé !

1 tháng 1 2020

a, #Góp ý từ nhiều người nhưng họ không giải nên t làm giùm

ĐK: \(x\le3\)

\(\left\{{}\begin{matrix}x^2+y^2+1=2\left(xy-x+y\right)\left(1\right)\\x^3+3y^2+5x-12=\left(12-y\right)\sqrt{3-x}\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow x^2+y^2+1-2xy+2x-2y=0\)

\(\Leftrightarrow\left(x-y+1\right)^2=0\) \(\Leftrightarrow x-y+1=0\Leftrightarrow y=x+1\) Thay vào (2)

\(\left(2\right)\)\(\Leftrightarrow x^3+3\left(x+1\right)^2+5x-12=\left[12-\left(x+1\right)\right]\sqrt{3-x}\)

\(\Leftrightarrow x^3+3x^2+11x-9=\left(11-x\right)\sqrt{3-x}\)

\(\Leftrightarrow x^3+3x^2+8x=\left(11-x\right)\sqrt{3-x}+3\left(3-x\right)\)

\(\Leftrightarrow x^3+3x^2+8x=\left(3-x\right)\sqrt{3-x}+8\sqrt{3-x}+3\left(3-x\right)\)

\(\Leftrightarrow x^3+3x^2+8x=\sqrt{\left(3-x\right)^3}+3\sqrt{\left(3-x\right)^2}+8\sqrt{3-x}\)

\(\Leftrightarrow x=\sqrt{3-x}\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x^2+x-3=0\end{matrix}\right.\) \(\Rightarrow x=\frac{-1+\sqrt{13}}{2}\left(tm\right)\Rightarrow y=\frac{1+\sqrt{13}}{2}\)

Vậy...

1 tháng 1 2020

Akai Haruma, No choice teen, Arakawa Whiter, Phạm Hoàng Lê Nguyên, Vũ Minh Tuấn, tth, HISINOMA KINIMADO, Nguyễn Việt Lâm

Mn giúp e vs ạ! thanks!

NV
30 tháng 5 2020

b/

\(\Leftrightarrow\left\{{}\begin{matrix}x^2=4-y^2\\2x^3=\left(x+y\right)\left(4-xy\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2=4\\2x^3=\left(x+y\right)\left(4-xy\right)\end{matrix}\right.\)

\(\Rightarrow2x^3=\left(x+y\right)\left(x^2+y^2-xy\right)\)

\(\Leftrightarrow2x^3=x^3+y^3\)

\(\Leftrightarrow x^3=y^3\Rightarrow x=y\)

Thay vào pt đầu:

\(2x^2=4\Rightarrow x^2=2\Rightarrow x=y=\pm\sqrt{2}\)

NV
30 tháng 5 2020

a/

\(\Leftrightarrow\left\{{}\begin{matrix}x^2\left(2x+y\right)+x\left(2x+y\right)=-6\\x^2+x+2x+y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2+x\right)\left(2x+y\right)=-6\\x^2+x+2x+y=1\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x^2+x=a\\2x+y=b\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}ab=-6\\a+b=1\end{matrix}\right.\) với

Theo Viet đảo, a và b là nghiệm của:

\(t^2-t-6=0\Rightarrow\left[{}\begin{matrix}t=3\\t=-2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2+x=3\\2x+y=-2\end{matrix}\right.\\\left\{{}\begin{matrix}x^2+x=-2\left(vn\right)\\2x+y=3\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x-3=0\\y=-2x-2\end{matrix}\right.\) (bấm casio)

NV
23 tháng 5 2019

Câu 1:

\(\Leftrightarrow\left\{{}\begin{matrix}x^3-y^3=3y^2+9\\3x^2+3y^2=3x+12y\end{matrix}\right.\)

\(\Rightarrow x^3-y^3-3x^2-3y^2=3y^2+9-3x-12y\)

\(\Leftrightarrow x^3-3x^2+3x-1=y^3+6y^2+12y+8\)

\(\Leftrightarrow\left(x-1\right)^3=\left(y+2\right)^3\)

\(\Leftrightarrow x-1=y+2\Rightarrow x=y+3\)

Thay vào pt dưới:

\(\left(y+3\right)^2+y^2=y+3-4y\)

\(\Leftrightarrow2y^2+9y+6=0\) \(\Rightarrow...\)

NV
23 tháng 5 2019

Câu 2:

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+2xy+2y^2+3x=0\\2xy+2y^2+6y+2=0\end{matrix}\right.\)

\(\Leftrightarrow x^2+4xy+4y^2+3x+6y+2=0\)

\(\Leftrightarrow\left(x+2y\right)^2+3\left(x+2y\right)+2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2y=-1\\x+2y=-2\end{matrix}\right.\)

TH1: \(x+2y=-1\Rightarrow x=-2y-1\) thay vào pt dưới:

\(\left(-2y-1\right)y+y^2+3y+1=0\)

\(\Leftrightarrow-y^2+2y+1=0\Rightarrow...\)

TH2: \(x+2y=-2\Rightarrow x=-2y-2\) thay vào pt dưới:

\(\left(-2y-2\right)y+y^2+3y+1=0\)

\(\Leftrightarrow-y^2-y+1=0\Rightarrow...\)