K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2017

Giải:

Đặt: (x + y) = a ; (y + z) = b ; (z + x) = c

HPT <=> \(\left\{{}\begin{matrix}ab=187\\bc=154\\ca=238\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{187}{a}\\\dfrac{187}{a}\cdot c=154\\c\cdot a=238\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{187}{a}\\c=\dfrac{154a}{187}\\\dfrac{154a}{187}\cdot a=238\end{matrix}\right.\) => \(154a^2=238\cdot187=44506\)

=> \(a^2=\dfrac{44506}{154}=289\Rightarrow a=\sqrt{289}=17\)

=> b = \(\dfrac{187}{17}=11\) ; c = \(\dfrac{238}{17}=14\)

Hay \(\left\{{}\begin{matrix}x+y=17\\y+z=11\\z+x=14\end{matrix}\right.\)

\(\Rightarrow x+y+y+z+z+x-17+11+14=42\)

\(\Leftrightarrow2\left(x+y+z\right)=42\Rightarrow x+y+z=21\)

=> \(\left\{{}\begin{matrix}x=21-\left(y+z\right)=21-11=10\\y=21-\left(z+x\right)=21-14=7\\z=21-\left(x+y\right)=21-17=4\end{matrix}\right.\)

Vậy ..........................

30 tháng 7 2017

Đặt x + y = a ( a > 0 )

y + z = b ( b > 0 )

x + z = c (c > )

Khi đó hệ pt thành :

\(\left\{{}\begin{matrix}ab=187\left(1\right)\\bc=154\left(2\right)\\ac=238\left(3\right)\end{matrix}\right.\)

Nhân (1) (2) (3) vế theo vế được: abc = 2618 (4)

Lần lượt chia (4) cho (1) (2) (3) ta được:

\(\left\{{}\begin{matrix}a=17\\b=11\\c=14\end{matrix}\right.\) hay \(\left\{{}\begin{matrix}x+y=17\\y+z=11\\x+z=14\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-z=6\\x+z=14\end{matrix}\right.\Leftrightarrow x=10\Rightarrow y=7\)\(z=4\)

Vậy nghiệm của hệ pt là (10;7;4)

30 tháng 3 2017

a) \(\left\{{}\begin{matrix}x+3y+2z=8\\2x+2y+z=6\\3x+y+z=6\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=1\\z=2\end{matrix}\right.\)

b) \(\left\{{}\begin{matrix}x-3y+2z=-7\\-2x+4y+3z=8\\3x+y-z=5\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{11}{14}\\y=\dfrac{5}{2}\\z=-\dfrac{1}{7}\end{matrix}\right.\)

5 tháng 5 2017

a) Đặt \(\left\{{}\begin{matrix}x+3y+2z=8\left(1\right)\\2x+2y+z=6\left(2\right)\\3x+y+z=6\left(3\right)\end{matrix}\right.\)
Cộng \(\left(2\right)+\left(3\right)\) ta có:\(\left\{{}\begin{matrix}x+3y+2z=8\left(1\right)\\2x+2y+z=6\left(2\right)\\5x+3y+2z=12\left(4\right)\end{matrix}\right.\)
Trừ \(\left(4\right)-\left(1\right)\) ta được: \(4x=4\Leftrightarrow x=1\).
Thay vào hệ phương trình ta được:
\(\left\{{}\begin{matrix}1+3y+2z=8\\2.1+2y+z=6\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=1\\z=2\end{matrix}\right.\).
Vậy hệ phương trình có nghiệm: \(\left\{{}\begin{matrix}x=1\\y=1\\z=2\end{matrix}\right.\).

4 tháng 5 2017

b) Đặt \(\left\{{}\begin{matrix}x+y+z=7\left(1\right)\\3x-2y+2z=5\left(2\right)\\4x-y+3z=10\left(3\right)\end{matrix}\right.\)
Cộng \(\left(1\right)+\left(2\right)\) ta có: \(4x-y+3z=12\). (4)
Từ (3) và (4): \(\left\{{}\begin{matrix}4x-y+3z=12\\4x-y+3z=10\end{matrix}\right.\) (vô nghiệm).
Vậy hệ phương trình vô nghiệm.

17 tháng 5 2017

a) \(\left\{{}\begin{matrix}x+2y-3z=2\\2x+7y+z=5\\-3x+3y-2z=-7\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x+2y-3z=2\\3y+7z=1\\-32z=-4\end{matrix}\right.\)

Đáp số : \(\left(x,y,z\right)=\left(\dfrac{55}{24},\dfrac{1}{24},\dfrac{1}{8}\right)\)

b) \(\left\{{}\begin{matrix}-x-3y+4z=3\\3x+4y-2z=5\\2x+y+2z=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-x-3y+4z=3\\-5y+10z=14\\-5y+10z=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-x-3y+4z=3\\-5y+10z=14\\0y+0z=-4\end{matrix}\right.\)

Phương trình cuối vô nghiệm, suy ra hệ phương trình đã cho vô nghiệm

9 tháng 10 2023

X = 96

Y= 80

Z= 48

10 tháng 10 2023

\(\left\{{}\begin{matrix}x+y+z=224\\-5x+3y+5z=0\\x-2z=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x+3y+3z=672\left(1\right)\\-5x+3y+5z=0\left(2\right)\\x-2z=0\left(3\right)\end{matrix}\right.\)

\(\left(1\right)-\left(2\right)\Leftrightarrow8x-2z=672\)

\(\Leftrightarrow4x-z=336\left(4\right)\)

\(\left(3\right);\left(4\right)\Leftrightarrow\left\{{}\begin{matrix}x-2z=0\\4x-z=336\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x-8z=0\\4x-z=336\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}7z=336\\x-2z=0\end{matrix}\right.\) 

\(\Leftrightarrow\left\{{}\begin{matrix}x=96\\z=48\end{matrix}\right.\)

\(\Rightarrow y=224-96-48=80\)

Vậy nghiệm hpt đã cho là \(\left\{{}\begin{matrix}x=96\\y=80\\z=48\end{matrix}\right.\)

8 tháng 11 2018

hệ pt tương đương\(\left\{{}\begin{matrix}2x-2y+3z+2x-y-z-t=1\\-3x+4y+z+4x-2y-2z-2t=5\\x+y+z=6\\2x-y-z-t=3\end{matrix}\right.\)

\(\left\{{}\begin{matrix}2x-2y+3z+3=1\\-3x+4y+z+6=5\\x+y+z=6\\2x-y-z-t=3\end{matrix}\right.\) bây h ta xét hệ3pt 3 ẩn

\(\left\{{}\begin{matrix}-x-5y+3x+3y+3z=-2\\-4x+3y+x+y+z=-1\\x+y+z=6\end{matrix}\right.\)

\(\left\{{}\begin{matrix}-x-5y+18=-2\\-4x+3y+6=-1\\x+y+z=6\end{matrix}\right.\)

đến đây còn lại 2 pt 2 ẩn, để dành bạn đọc chứng minh nhévui

NV
8 tháng 10 2020

Đặt vế trái là P

Ta có: \(P\le x^2y+y^2z+z^2x+xyz\)

Không mất tính tổng quát, giả sử \(x=mid\left\{x;y;z\right\}\Rightarrow\left(x-y\right)\left(x-z\right)\le0\)

\(\Leftrightarrow x^2+yz\le xy+xz\)

\(\Rightarrow x^2y+y^2z\le xy^2+xyz\)

\(\Rightarrow P\le xy^2+z^2x+2xyz=x\left(y^2+z^2+2yz\right)=x\left(y+z\right)^2\)

\(\Rightarrow P\le\frac{1}{2}.2x\left(y+z\right)\left(y+z\right)\le\frac{1}{2}\left(\frac{2x+y+z+y+z}{3}\right)^3=\frac{4}{27}\)

Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(\frac{1}{3};0;\frac{2}{3}\right)\)

NV
7 tháng 2 2021

Đề bài sai, phản ví dụ: \(x=y=\dfrac{1}{16};z=256\)

Nói chung, chỉ cần 2 biến đủ nhỏ là BĐT này đều sai