\(\left\{{}\begin{matrix}x^2-2y^2+xy-3x+3y=0\\x^2+y^2+xy=3\end{matrix}\right.\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 10 2021

\(x^2-2y^2+xy-3x+3y=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+2y\right)-3\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+2y-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=3-2y\end{matrix}\right.\)

Thay xuống pt dưới ...

4 tháng 10 2019

b) Lấy pt đầu trừ pt dưới thu được:

\(x^3-y^3+2\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2+2\right)=0\)

Do \(x^2+xy+y^2=\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}+2>0\)

Do đó x = y. Thay vào pt đầu thu được:

\(x^3-2x-1=0\Leftrightarrow\left(x+1\right)\left(x^2-x-1\right)=0\)

c) Lấy pt trên trừ pt dưới:

\(2\left(x^2-y^2\right)-3\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(2x+2y-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y\\2x+2y-3=0\end{matrix}\right.\)

Auto làm nốt:D

P/s: Is that true?

NV
2 tháng 10 2019

a/ \(\left\{{}\begin{matrix}x+y+xy=3\\xy\left(x+y\right)=2\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x+y=a\\xy=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=3\\ab=2\end{matrix}\right.\)

\(\Rightarrow\) Theo Viet đảo, a và b là nghiệm của: \(t^2-3t+2=0\Rightarrow\left[{}\begin{matrix}t=1\\t=2\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}x+y=1\\xy=2\end{matrix}\right.\) theo Viet đảo, x và y là nghiệm của:

\(t^2-t+2=0\) (vô nghiệm)

TH2: x và y là nghiệm của: \(t^2-2t+1=0\Rightarrow t=1\Rightarrow x=y=1\)

b/ \(\left\{{}\begin{matrix}\left(x+y\right)^2-2xy=2xy+4\\x+y=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x+y=6\\xy=8\end{matrix}\right.\)

Theo Viet đảo, x và y là nghiệm: \(t^2-6t+8=0\Rightarrow\left[{}\begin{matrix}t=2\\t=4\end{matrix}\right.\)

\(\Rightarrow\left(x;y\right)=\left(4;2\right);\left(2;4\right)\)

NV
2 tháng 10 2019

c/ Trừ vế với vế:

\(x^2-y^2-2x+2y=y-x\)

\(\Leftrightarrow\left(x+y\right)\left(x-y\right)-3\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y-3\right)=0\Rightarrow\left[{}\begin{matrix}y=x\\y=3-x\end{matrix}\right.\)

Thay vào pt đầu:

\(\left[{}\begin{matrix}x^2-2x=x\\x^2-2x=3-x\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x\left(x-3\right)=0\\x^2-x-3=0\end{matrix}\right.\) \(\Rightarrow...\)

d/ Sao có t từ đâu vào đây thế này? :(

e/ \(\Leftrightarrow\left\{{}\begin{matrix}4x^2-2y^2=2\\xy+x^2=2\end{matrix}\right.\) \(\Rightarrow3x^2-xy-2y^2=0\)

\(\Rightarrow\left(x-y\right)\left(3x+2y\right)=0\) \(\Rightarrow\left[{}\begin{matrix}y=x\\y=-\frac{3}{2}x\end{matrix}\right.\)

Thay vào pt đầu: \(\left[{}\begin{matrix}2x^2-x^2=1\\2x^2-\left(-\frac{3}{2}x\right)^2=1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2=1\\x^2=-4\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow\left(x;y\right)=\left(1;1\right);\left(-1;-1\right)\)

Giải hệ phương trình: 1. \(\left\{{}\begin{matrix}x+3=2\sqrt{\left(3y-x\right)\left(y+1\right)}\\\sqrt{3y-2}-\sqrt{\dfrac{x+5}{2}}=xy-2y-2\end{matrix}\right.\) 2. \(\left\{{}\begin{matrix}\sqrt{2y^2-7y+10-x\left(y+3\right)}+\sqrt{y+1}=x+1\\\sqrt{y+1}+\dfrac{3}{x+1}=x+2y\end{matrix}\right.\) 3. \(\left\{{}\begin{matrix}\sqrt{4x-y}-\sqrt{3y-4x}=1\\2\sqrt{3y-4x}+y\left(5x-y\right)=x\left(4x+y\right)-1\end{matrix}\right.\) 4....
Đọc tiếp

Giải hệ phương trình:

1. \(\left\{{}\begin{matrix}x+3=2\sqrt{\left(3y-x\right)\left(y+1\right)}\\\sqrt{3y-2}-\sqrt{\dfrac{x+5}{2}}=xy-2y-2\end{matrix}\right.\)

2. \(\left\{{}\begin{matrix}\sqrt{2y^2-7y+10-x\left(y+3\right)}+\sqrt{y+1}=x+1\\\sqrt{y+1}+\dfrac{3}{x+1}=x+2y\end{matrix}\right.\)

3. \(\left\{{}\begin{matrix}\sqrt{4x-y}-\sqrt{3y-4x}=1\\2\sqrt{3y-4x}+y\left(5x-y\right)=x\left(4x+y\right)-1\end{matrix}\right.\)

4. \(\left\{{}\begin{matrix}9\sqrt{\dfrac{41}{2}\left(x^2+\dfrac{1}{2x+y}\right)}=3+40x\\x^2+5xy+6y=4y^2+9x+9\end{matrix}\right.\)

5. \(\left\{{}\begin{matrix}\sqrt{xy+\left(x-y\right)\left(\sqrt{xy}-2\right)}+\sqrt{x}=y+\sqrt{y}\\\left(x+1\right)\left[y+\sqrt{xy}+x\left(1-x\right)\right]=4\end{matrix}\right.\)

6. \(\left\{{}\begin{matrix}x^4-x^3+3x^2-4y-1=0\\\sqrt{\dfrac{x^2+4y^2}{2}}+\sqrt{\dfrac{x^2+2xy+4y^2}{3}}=x+2y\end{matrix}\right.\)

7. \(\left\{{}\begin{matrix}x^3-12z^2+48z-64=0\\y^3-12x^2+48x-64=0\\z^3-12y^2+48y-64=0\end{matrix}\right.\)

0

a: \(\Leftrightarrow\left\{{}\begin{matrix}\left(x+2\right)\left(y+3\right)-xy=100\\xy-\left(x-2\right)\left(y-2\right)=64\end{matrix}\right.\)

=>xy+3x+2y+6-xy=100 và xy-xy+2x+2y-4=64

=>3x+2y=94 và 2x+2y=68

=>x=26 và x+y=34

=>x=26 và y=8

b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3x+3+2}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x+2-2}{x+1}-\dfrac{5y+20-11}{y+4}=9\end{matrix}\right.\)

=>\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x+1}-\dfrac{2}{y+4}=4-3=1\\\dfrac{-2}{x+1}+\dfrac{11}{y+4}=9+5-2=12\end{matrix}\right.\)

=>x+1=18/35; y+4=9/13

=>x=-17/35; y=-43/18

NV
23 tháng 5 2019

Câu 1:

\(\Leftrightarrow\left\{{}\begin{matrix}x^3-y^3=3y^2+9\\3x^2+3y^2=3x+12y\end{matrix}\right.\)

\(\Rightarrow x^3-y^3-3x^2-3y^2=3y^2+9-3x-12y\)

\(\Leftrightarrow x^3-3x^2+3x-1=y^3+6y^2+12y+8\)

\(\Leftrightarrow\left(x-1\right)^3=\left(y+2\right)^3\)

\(\Leftrightarrow x-1=y+2\Rightarrow x=y+3\)

Thay vào pt dưới:

\(\left(y+3\right)^2+y^2=y+3-4y\)

\(\Leftrightarrow2y^2+9y+6=0\) \(\Rightarrow...\)

NV
23 tháng 5 2019

Câu 2:

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+2xy+2y^2+3x=0\\2xy+2y^2+6y+2=0\end{matrix}\right.\)

\(\Leftrightarrow x^2+4xy+4y^2+3x+6y+2=0\)

\(\Leftrightarrow\left(x+2y\right)^2+3\left(x+2y\right)+2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2y=-1\\x+2y=-2\end{matrix}\right.\)

TH1: \(x+2y=-1\Rightarrow x=-2y-1\) thay vào pt dưới:

\(\left(-2y-1\right)y+y^2+3y+1=0\)

\(\Leftrightarrow-y^2+2y+1=0\Rightarrow...\)

TH2: \(x+2y=-2\Rightarrow x=-2y-2\) thay vào pt dưới:

\(\left(-2y-2\right)y+y^2+3y+1=0\)

\(\Leftrightarrow-y^2-y+1=0\Rightarrow...\)