Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TH1: x=0
TH2: x khác 0 thì y,z khác 0
VT là bậc hai theo 2 biến, VP là bậc nhất theo các biến tương ứng. Do đó chia pt cho 2 biến tương ứng theo VT. cụ thể pt đầu chia cho xy, pt 2 chia cho yz, pt 3 chia cho zx
ta quy về đươc pt 3 ẩn giải được
còn lại em tự giải nhé
ê cu bài phần a nè
(2)<=>X2(1-X3)+y2(1-y3)=0 (3)
từ (1) => 1-x3=y3;1-y3=x3
thay vào (3)ta được :x2.y3+y2.x3=0
<=>x2.y2.(x+y)=0 (tới đây tự lo liệu)
a: Sửa đề:
\(\left\{{}\begin{matrix}3xy=2\left(x+y\right)\\4yz=3\left(y+z\right)\\5xz=6\left(z+x\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x+y}{xy}=\dfrac{3}{2}\\\dfrac{y+z}{yz}=\dfrac{4}{3}\\\dfrac{x+z}{xz}=\dfrac{5}{6}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{3}{2}\\\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{4}{3}\\\dfrac{1}{x}+\dfrac{1}{z}=\dfrac{5}{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{3}{2}\\\dfrac{1}{y}=1\\\dfrac{1}{z}=\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow x=\dfrac{2}{3};y=1;z=3\)
b: Áp dụng tính chất của dãy tỉ số bằng nhau,ta được:
\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{9}=\dfrac{7x-3y+2z}{7\cdot4-3\cdot3+2\cdot9}=\dfrac{37}{37}=1\)
=>x=4; y=3; z=9
Nhận thấy \(x=y=z=0\) là 1 nghiệm
Với \(x;y;z\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{1}{x}+\frac{1}{y}=\frac{5}{12}\\\frac{1}{y}+\frac{1}{z}=\frac{5}{18}\\\frac{1}{z}+\frac{1}{x}=\frac{13}{36}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\frac{1}{x}=\frac{1}{4}\\\frac{1}{y}=\frac{1}{6}\\\frac{1}{z}=\frac{1}{9}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=4\\y=6\\z=9\end{matrix}\right.\)
Vậy hệ có 2 bộ nghiệm \(\left(x;y;z\right)=\left(0;0;0\right);\left(4;6;9\right)\)
trong các giá trị x,y hoặc z bằng 0 thì bạn dễ dàng suy ra hai giá trị còn lại bằng 0. Vậy x=y=z=0 là một nghiệm.
Xét trường hợp x,y,z khác 0 bạn sẽ có:
3xy=2x+2y (1*)
5yz= 6(y+z) (2*)
4xz= 3(z+x) (3*)
=>
3xyz = 2xz + 2yz (4*)
5xyz = 6xy + 6xz (5*)
4xyz = 3yz + 3xy (6*)
3 x (4*)–(5*) => bạn sẽ có 4xyz=6yz–6xy
Thế 4xyz=6yz–6xy vào (6*) bạn sẽ có:
=>6yz–6xy = 3yz + 3xy
hay 3yz=9xy =>z=3x (7*)
2x(6*)–(5*) => 3xyz=6yz – 6xz
Thế vào 3xyz=6yz – 6xz (4*)
=>6yz–6xz=2xz+2yz
=>4yz=8xz
=> y= 2x (8*)
Thay y=2x vào (1*) => 6x²=6x => x=1. => y=2; z=3.
suy ra hệ sẽ có hai nghiệm là:
x=y=z=0 và x=1; y=2; z=3.