\(\hept{\begin{cases}x^4-y^4=240\\x^3-2y^3=3\left(x^2-4y^2\right)-4\left(x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2017

Nhân phương trình thứ hai với -8 rồi cộng vào phương trình thứ nhất, ta được:

x4 - 8x3 +24x2 - 32x + 16 = y4 - 16y3 +96y- 256y + 256

<=> (x - 2)4 = (y - 2)4

<=>\(\orbr{\begin{cases}x-2=y-4\\x-2=4-y\end{cases}}\)

<=>\(\orbr{\begin{cases}x=y-2\\x=6-y\end{cases}}\)

Với x = y - 2, thay vào phương trình 1 ta được:

-8y3 + 24y- 32y + 16 = 240

<=> y3 - 3y+ 4y + 28 = 0

<=> (y + 2)(y- 5y + 14 ) = 0

<=> y = -2 ; x = -4

Với x = 6 - y, thay vào phương trình 1 ta được:

-24y3 + 216y- 864y + 1296 = 240

<=> y3 - 9y+ 36y - 44 = 0

<=> (y - 2)(y- 7y + 22 ) = 0

<=> y = 2 ; x = 4

Vậy hệ phương trình đã cho có hai nghiệm trên.

8 tháng 1 2017

Thấy giống AILABA quá

19 tháng 8 2017

Quen quen :v. Nhân pt(2) với 8 rồi trừ theo vế của pt(1) cho 8pt(2) có:

\(x^4-8x^3+24x^2-32x+16=y^4-16y^3+96y^2-256y+256\)

\(\Leftrightarrow(x-2)^4=(y-4)^4\)

Suy ra x-2=y-4 hoặc x-2=-y+4

Tiếp nhé :v

7 tháng 1 2017

\(\hept{\begin{cases}x^4-y^4=240\\x^3-2y^3=3\left(x^2-4y^2\right)-4\left(x-8y\right)\end{cases}}\)

 \(\Leftrightarrow\hept{\begin{cases}x^4-y^4=240\\8x^3-16y^3=24\left(x^2-4y^2\right)-32\left(x-8y\right)\end{cases}}\)

Lấy trên trừ dưới ta được

x4 - y4 - 8x3 + 16y3 + 24x2 - 96y2 - 32x + 256y - 240 = 0

<=> (x + 2 - y)(x + y - 6)(y2 - 8y + x2 - 4x + 20) = 0

Làm tiếp nhé

7 tháng 1 2017

Với x = y - 2

Thế vào pt đầu ta được

(y - 2)4 - y4 = 240

<=> y3 - 3y2 + 4y + 28 = 0

<=> (y + 2)(y2 - 5y + 14) = 0

<=> y = - 2

=> x = - 4

12 tháng 2 2017

3/ \(\hept{\begin{cases}x^4+y^2=\frac{697}{81}\left(1\right)\\x^2+y^2+xy-3x-4y+4=0\left(2\right)\end{cases}}\)

Xét phương trình (2) ta có:

\(x^2+\left(y-3\right)x+y^2-4y+4=0\)

Để PT theo nghiệm x có nghiệm thì 

\(\Delta=\left(y-3\right)^2-4.\left(y^2-4y+4\right)\ge0\)

\(\Leftrightarrow-3y^2+10y-7\ge0\)

\(\Leftrightarrow1\le y\le\frac{7}{3}\)

\(\Leftrightarrow1\le y^2\le\frac{49}{9}\)

Tương tự ta có:

\(0\le x\le\frac{4}{3}\)

\(\Leftrightarrow0\le x^4\le\frac{256}{81}\)

Từ đây ta có: \(x^4+y^2\le\frac{256}{81}+\frac{49}{9}=\frac{697}{81}\)

Dấu = xảy ra khi \(\hept{\begin{cases}x=\frac{4}{3}\\y=\frac{7}{3}\end{cases}}\)

Thế ngược lại hệ không thỏa mãn. Vậy hệ vô nghiệm

11 tháng 2 2017

1/ Điều kiện \(\hept{\begin{cases}x\ge1\\y\ge0\end{cases}}\)\(\hept{\begin{cases}xy+x+y-x^2+2y^2=0\\x\sqrt{2y}-y\sqrt{x-1}=2x-2y\end{cases}}\)

Xét phương trình đầu ta có

\(xy+x+y-x^2+2y^2=0\)

\(\Leftrightarrow\left(x+y\right)\left(2y-x+1\right)=0\)

\(\Rightarrow x=1+2y\)

Thế vào pt dưới ta được

\(\sqrt{2y}\left(y+1\right)=2y+2\)

\(\Leftrightarrow\left(y+1\right)\left(\sqrt{2y}-2\right)=0\)

Tới đây tự làm tiếp nhé 

22 tháng 5 2018

\(\hept{\begin{cases}2x+2y+3x-3y=4\\2x-2y+x+y=5\end{cases}}\Leftrightarrow\hept{\begin{cases}5x-y=4\\3x-y=5\end{cases}}.\)

\(2x=-1\Leftrightarrow x=\frac{-1}{2}\) " thay x = 1/2 rồi tự làm

b) 

\(\hept{\begin{cases}6xy-9x+4y-6=6xy\\4xy-20x+5y-25=4xy\end{cases}\Leftrightarrow\hept{\begin{cases}-9x+4y=6\\-20x+5y=25\end{cases}}}\)

4y 5y " chung 20 "

\(\hept{\begin{cases}-45x+20y=30\\-80x+20y=100\end{cases}}\Leftrightarrow35x=-70\Leftrightarrow x=-2\)

thay x=-2 vào pt 1 hoăc 2 rồi tự làm

22 tháng 5 2018

hệ phương trình trên bạn đặt x+y=a và x-y= b sau đó bạn giải hệ vừa đặt ẩn phụ để tìm a, b rồi bạn giải cái hệ x+y=a và x-y= b là tìm đc x và y bạn nhé!

còn hệ phương trình dưới thì bạn chỉ cần nhân vào rồi chuyển vế nó sẽ mất hạng tử chứa x.y thì nó sẽ trở thành hệ bình thường rồi bạn giải hệ đó ra sẽ tìm đc x và y nha bạn!

17 tháng 3 2019

ĐKXĐ: \(2x-y-1\ge0;x+2y\ge0\)

Đặt \(\sqrt{2x-y-1}=a;\sqrt{x+2y}=b\left(a,b\ge0\right)\). Khi đó ta có:

\(\left(2b^2-1\right)a=\left(2a^2-1\right)b\Leftrightarrow\left(a-b\right)\left(2ab+1\right)=0\)

\(\Leftrightarrow a=b\) hoặc \(2ab+1=0\)(loại vì \(a,b\ge0\))

Suy ra: \(\sqrt{2x-y-1}=\sqrt{x+2y}\Leftrightarrow x=3y+1\)

Pt đầu tiên trở thành: \(\left(3y+1\right)^2-5y^2-8y=3\)

\(\Leftrightarrow\left(y-1\right)\left(2y+1\right)=0\Leftrightarrow\orbr{\begin{cases}y=1\\y=-\frac{1}{2}\end{cases}}\)

+) Với  \(y=1\Rightarrow x=4\Rightarrow\left(x;y\right)=\left(4;1\right)\)(tm)

+) Với  \(y=-\frac{1}{2}\Rightarrow x=-\frac{1}{2}\Rightarrow\left(x;y\right)=\left(-\frac{1}{2};-\frac{1}{2}\right)\) (loại)

Vậy hpt có nghiệm duy nhất \(\left(x;y\right)=\left(4;1\right).\)

Không thấy ai giải, mình giúp bạn vậy :P  

Vào thống kê hỏi đáp là thấy ha :)

17 tháng 2 2020

Tks nhé :>

19 tháng 12 2019

1/ĐKXĐ: \(x^2+4y+8\ge0\)

PT (1) \(\Leftrightarrow\left(x-2\right)\left(x-y+3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=2\\x=y-3\end{cases}}\)

+) Với x = 2, thay vào PT (2): \(4\sqrt{y^2+4}=y\sqrt{4y+12}\) (\(\text{ĐKXĐ:}y\ge-3\))

\(\Leftrightarrow\hept{\begin{cases}y\ge0\\16\left(y^2+4\right)=y^2\left(4y+12\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}y\ge0\\4\left(y^3-y^2-16\right)=0\end{cases}}\)

\(\Rightarrow y=\frac{1}{3}\left(1+\sqrt[3]{217-12\sqrt{327}}+\sqrt[3]{217+12\sqrt{327}}\right)\)(nghiệm khổng lồ quá chả biết tính kiểu gì nên em nêu đáp án thôi:v)

Vậy...

+) Với x = y - 3, thay vào PT (2):

\(\left(y-1\right)\sqrt{y^2+4}=y\sqrt{y^2-2y+17}\)

\(\Rightarrow\left(y-1\right)^2\left(y^2+4\right)=y^2\left(y^2-2y+17\right)\)(Biến đổi hệ quả nên ta dùng dấu suy ra)

\(\Leftrightarrow4\left(1-3y\right)\left(y+1\right)=0\Leftrightarrow\orbr{\begin{cases}y=\frac{1}{3}\\y=-1\end{cases}}\)

Thử lại ta thấy chỉ có y = - 1 \(\Rightarrow x=y-3=-4\)