Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có ( I ) : \(\left\{{}\begin{matrix}x+y=5\\xy=5\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=5-y\\y\left(5-y\right)=5\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=5-y\\5y-y^2-5=0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=5-y\\y^2-5y+5=0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=5-y\\y^2-2.\frac{5}{2}y+\left(\frac{5}{2}\right)^2-1,25=0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=5-y\\\left(y-2,5\right)^2=1,25\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=5-y\\\left[{}\begin{matrix}y-2,5=\frac{\sqrt{5}}{2}\\y-2,5=-\frac{\sqrt{5}}{2}\end{matrix}\right.\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x=5-\frac{\sqrt{5}}{2}-2,5=\frac{5-\sqrt{5}}{2}\\x=5-2,5+\frac{\sqrt{5}}{2}=\frac{15-\sqrt{5}}{2}\end{matrix}\right.\\\left[{}\begin{matrix}y=\frac{\sqrt{5}}{2}+2,5\\y=2,5-\frac{\sqrt{5}}{2}\end{matrix}\right.\end{matrix}\right.\)
Vậy hệ phương trình có 2 nghiệm là : \(\left(x,y\right)=\left(\frac{5-\sqrt{5}}{2},\frac{5+\sqrt{5}}{2}\right),\left(\frac{15-\sqrt{5}}{2},\frac{5-\sqrt{5}}{2}\right)\) .
Từ pt (1) \(\Rightarrow x=8+\left|y-5\right|\ge8\Rightarrow x+1>0\)
- Nếu \(y\ge5\Rightarrow3\left|y+3\right|\ge24>21\Rightarrow\) vô nghiệm
- Nếu \(-5\le y\le5\) hệ trở thành:
\(\left\{{}\begin{matrix}x-\left(5-y\right)=8\\x+1+3\left(y+5\right)=21\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=13\\x+3y=5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=17\\y=-4\end{matrix}\right.\)
- Nếu \(y< -5\) hệ trở thành:
\(\left\{{}\begin{matrix}x-\left(5-y\right)=8\\x+1+3\left(-y-5\right)=21\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=13\\x-3y=35\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{37}{2}\\y=\dfrac{-11}{2}\end{matrix}\right.\)
Luân Đào, Hung nguyen, DƯƠNG PHAN KHÁNH DƯƠNG, Thierry Henry, Hạnh Hạnh, Nguyễn Việt Lâm, le thi hong van, Lân Trần Quốc, Unruly Kid, Khôi Bùi , Lê Nguyễn Ngọc Nhi, Ma Đức Minh, Mysterious Person, Akai Haruma, Lightning Farron, Ribi Nkok Ngok, ...
a/ Theo Viet đảo, x và y là nghiệm của pt:
\(t^2-5t+5=0\Rightarrow t=\frac{5\pm\sqrt{5}}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\frac{5+\sqrt{5}}{2}\\y=\frac{5-\sqrt{5}}{2}\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x=\frac{5-\sqrt{5}}{2}\\y=\frac{5+\sqrt{5}}{2}\end{matrix}\right.\)
b/ Đặt \(Y=-y\Rightarrow\left\{{}\begin{matrix}x+Y=1\\xY=-6\end{matrix}\right.\)
Theo Viet đảo, x và Y là nghiệm của: \(t^2-t-6=0\Rightarrow\left[{}\begin{matrix}t=3\\t=-2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=3\\Y=-2\Rightarrow y=2\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x=-2\\Y=3\Rightarrow y=-3\end{matrix}\right.\)
ý 2
Do cắt trục tung tại điểm có tung độ bằng -4--->b=-4(1)
Cắt trục hoành tại điểm có hoành độ bằng 2
-->x=2,y=0
-->2a+b=0 hay 2a=-b(2)
Thay (1) vào (2) ta dc
2x=4
-->x=2
Vậy a=2,b=-4
HPT\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-xy=1-2xy\\\left(x+y\right)\left(1-2xy\right)=x+3y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+xy=1\\x^2+xy=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+xy=1\\y=-\sqrt{2};\sqrt{2}\end{matrix}\right.\)
The vao roi tinh la xong
=>12/(x+y-1)-15/(2x-y+3)=15/2 và 12/(x+y-1)-4/(2x-y+3)=28/5
=>x+y-1=22/9; 2x-y+3=-110/19
=>x+y=31/9; 2x-y=-167/19
=>x=-914/513; y=2681/513
Lời giải:
Ta thấy:
\(11=x^5+y^5=(x^2+y^2)(x^3+y^3)-x^2y^2(x+y)\)
\(=[(x+y)^2-2xy][(x+y)^3-3xy(x+y)]-x^2y^2\)
\(=(1-2xy)(1-3xy)-x^2y^2\)
\(\Leftrightarrow 1-5xy+5x^2y^2=11\)
\(\Leftrightarrow 5x^2y^2-5xy-10=0\)
\(\Leftrightarrow x^2y^2-xy-2=0\)
\(\Leftrightarrow (xy-2)(xy+1)=0\rightarrow \left[\begin{matrix} xy=2\\ xy=-1\end{matrix}\right.\)
Nếu $xy=2, x+y=1$ thì theo định lý Vi-et đảo thì $x,y$ là nghiệm của pt: \(X^2-X+2=0\) (dễ thấy pt này vô nghiệm nên không tìm được $x,y$ thỏa mãn)
Nếu \(xy=-1, x+y=1\). Theo định lý Vi-et đảo thì $x,y$ là nghiệm của pt: \(X^2-X-1=0\Rightarrow (x,y)=(\frac{1+\sqrt{5}}{2}; \frac{1-\sqrt{5}}{2})\) và ngược lại
Vậy..........
\(\Leftrightarrow\left\{{}\begin{matrix}x+y+xy=5\\\left(x+y\right)^2-2xy+x+y=8\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+y=a\\xy=b\end{matrix}\right.\) với \(a^2\ge4b\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=5\\a^2+a-2b=8\end{matrix}\right.\) \(\Rightarrow a^2+a-2\left(5-a\right)=8\)
\(\Leftrightarrow a^2+3a-18=0\Rightarrow\left[{}\begin{matrix}a=3\Rightarrow b=2\\a=-6\Rightarrow b=11\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(1;2\right);\left(2;1\right)\)
\(\left\{{}\begin{matrix}\dfrac{4}{x+y-1}-\dfrac{5}{2x-y+3}=\dfrac{5}{2}\\\dfrac{3}{x+y-1}-\dfrac{1}{2x-y+3}=\dfrac{7}{5}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^3+y^3=^{ }1\left(1\right)\\x^5+y^5=x^2+y^2\left(2\right)\end{matrix}\right.\)
(2)\(\Leftrightarrow x^5-x^2+y^5-y^2=0\)
\(\Leftrightarrow x^2\left(x^3-1\right)+y^2\left(y^3-1\right)=0\)
\(\Leftrightarrow x^2\left(-y\right)^3+y^2\left(-x\right)^3=0\)
\(\Leftrightarrow x^2y^3+y^2x^3=0\)
\(\Leftrightarrow x^2y^2\left(x+y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\Rightarrow y=1\\y=0\Rightarrow x=1\\x=-y\left(loại\right)\end{matrix}\right.\)