Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{2x+1}-\sqrt{3x}=x-1\)
ĐK: \(x\ge0\)
\(\sqrt{2x+1}-\sqrt{3x}=3x-\left(2x+1\right)\)
\(\Leftrightarrow\sqrt{2x+1}-\sqrt{3x}=\left(\sqrt{3x}-\sqrt{2x+1}\right)\left(\sqrt{3x}+\sqrt{2x+1}\right)\)
\(\Leftrightarrow\left(\sqrt{2x+1}-\sqrt{3x}\right)\left(1+\sqrt{3x}+\sqrt{2x+1}\right)=0\)
\(\Leftrightarrow\sqrt{2x+1}=\sqrt{3x}\Rightarrow x=1\left(tm\right)\)
pt thứ (1) <=> x2 + y2 = 1 - xy
pt thứ (2) <=> (x+y)(x2 + y2 - xy) = x+ 3y
Thế pt (1) vào Pt (2) ta được
(x+y).(1 - 2xy) = x + 3y
<=> x - 2x2y + y - 2xy2 = x + 3y
<=> -2xy. (x+y) - 2y = 0
<=> y. (1 + x(x+y)) = 0
<=> y = 0 hoặc x.(x+y) = - 1
+) y = 0 => x2 = 1 => x = 1 hoặc x = -1
Từ pt thứ 2 => x3= x => x = 0 hoặc x = 1 hoặc x = -1
Vậy x = 1; y = hoặc x = -1 và y = 0
+) x.(x+y) = - 1 => x2 + xy = -1. Từ pt thứ 1
=> y2 - 1 = 1 <=> y2 = 2 => y = \(\sqrt{2}\) hoặc y = - \(\sqrt{2}\)
Thay y = \(\sqrt{2}\) vào x(x+y) = -1 => x=.....
a)\(\hept{\begin{cases}x+y+xy=11\\x^2y+xy^2=30\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y+xy=11\\xy\left(x+y\right)=30\end{cases}}\)
Đặt \(S=x+y;P=xy\left(S^2\ge4P\right)\) có:
\(\hept{\begin{cases}S+P=11\\SP=30\end{cases}}\Rightarrow\hept{\begin{cases}S=5\\P=6\end{cases}}or\hept{\begin{cases}S=6\\P=5\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y=6\\xy=5\end{cases}or\hept{\begin{cases}x+y=5\\xy=6\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}x=1\\y=5\end{cases};\hept{\begin{cases}x=5\\y=1\end{cases}}or\hept{\begin{cases}x=2\\y=3\end{cases}};\hept{\begin{cases}x=3\\y=2\end{cases}}}\)
b)Thay số hay đặt ẩn.... gì đó tùy, nhiều pp
ra \(x=8;y=-8\)
b) \(\left\{{}\begin{matrix}\left(x-1\right)^2-2y=2\\\left(x+1\right)^2+3y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3\left(x+1\right)^2-6y=6\left(1\right)\\2\left(x-1\right)^2+6y=2\left(2\right)\end{matrix}\right.\)
Cộng theo vế 2 pt trên, ta có
\(3\left(x+1\right)^2+2\left(x-1\right)^2=8\)
\(\Leftrightarrow5x^2+2x-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{5}\\x=-1\end{matrix}\right.\)
Từ đó dễ dàng tìm được y.
a) \(\left\{{}\begin{matrix}\left(x+y\right)^2=50\left(1\right)\\x+5\left(y-1\right)=xy\left(2\right)\end{matrix}\right.\)
Ta viết lại pt (2)
\(x+5\left(y-1\right)=xy\)
\(\Leftrightarrow\left(x-xy\right)+5\left(y-1\right)=0\)
\(\Leftrightarrow x\left(1-y\right)-5\left(1-y\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(1-y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\y=1\end{matrix}\right.\)
- TH1: Thay x = 5 vào pt (1) tìm được \(\left[{}\begin{matrix}y=-5+5\sqrt{2}\\y=-5-5\sqrt{2}\end{matrix}\right.\)
- TH2: Thay y = 1 vào pt (1) tìm được \(\left[{}\begin{matrix}x=-1+5\sqrt{2}\\x=-1-5\sqrt{2}\end{matrix}\right.\)