Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này biến đổi một tí
cộng cả 3 pt ta được
\(x^2+y^2+z^2+x+y+z=6\\ \Leftrightarrow x^2+2\cdot\frac{1}{2}\cdot x+\frac{1}{4}+y^2+2\cdot\frac{1}{2}\cdot y+\frac{1}{4}+z^2+2\cdot\frac{1}{2}\cdot z+\frac{1}{4}=\frac{21}{4}\)
suy ra
\(\left(x+\frac{1}{2}\right)^2+\left(y+\frac{1}{2}\right)^2+\left(z+\frac{1}{2}\right)^2=\frac{1}{4}+\frac{9}{4}+\frac{16}{4}\)
vì x , y , z có vai trò như nhau nên
(x;y;z)= ( 0 ; 1 ; 3/2 ) và các hoán vị
Lời giải:
\(\left\{\begin{matrix} x+\frac{1}{y}=2(1)\\ y+\frac{1}{z}=2(2)\\ z+\frac{1}{x}=2(3)\end{matrix}\right.\)
Lấy \((1)-(2); (2)-(3); (3)-(1)\) ta thu được:
\(\left\{\begin{matrix} x-y+\frac{z-y}{yz}=0\\ y-z+\frac{x-z}{xz}=0\\ z-x+\frac{y-x}{xy}=0\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} x-y=\frac{y-z}{yz}\\ y-z=\frac{z-x}{xz}\\ z-x=\frac{x-y}{xy}\end{matrix}\right.\)
\(\Rightarrow (x-y)(y-z)(z-x)=\frac{(x-y)(y-z)(z-x)}{(xyz)^2}\)
\(\Leftrightarrow (x-y)(y-z)(z-x)(1-\frac{1}{xyz})(1+\frac{1}{xyz})=0\)
TH1: \(x-y=0\Leftrightarrow x=y\Rightarrow x+\frac{1}{x}=2\)
\(\Rightarrow x^2-2x+1=0\Leftrightarrow (x-1)^2=0\Leftrightarrow x=1\rightarrow y=1\)
Thay vào PT\((2)\Rightarrow 1+\frac{1}{z}=2\rightarrow z=1\)
Ta thu được \((x,y,z)=(1,1,1)\)
TH2: \(y-z=0; z-x=0\) hoàn toàn giống TH1 ta cũng có \((x,y,z)=(1,1,1)\)
TH3: \(1-\frac{1}{xyz}=1\Rightarrow xyz=1\)
Thay vào PT(1) và (2)
\(\left\{\begin{matrix} x+\frac{1}{y}=2\\ y+xy=2\end{matrix}\right.\Rightarrow \left\{\begin{matrix} xy+1=2y\\ xy=2-y\end{matrix}\right.\)
\(\Rightarrow 2-y+1=2y\Leftrightarrow y=1\Rightarrow x=z=1\)
TH4: \(1+\frac{1}{xyz}=0\Leftrightarrow xyz=-1\)
Thay vào PT (1) và (2):
\(\left\{\begin{matrix} x+\frac{1}{y}=2\\ y-xy=2\end{matrix}\right.\Rightarrow \left\{\begin{matrix} xy+1=2y\\ xy=y-2\end{matrix}\right.\)
\(\Rightarrow y-2+1=2y\Leftrightarrow y=-1\)
\(\Rightarrow x+\frac{1}{-1}=2\Rightarrow x=3; -1+\frac{1}{z}=2\Rightarrow z=\frac{1}{3}\)
Thử vào PT(3) thấy không đúng (loại)
Vậy \((x,y,z)=(1,1,1)\)
Câu 1 :
Ta có :
\(\Delta=\left(m-1\right)^2-4.\left(2m-7\right)\)
\(=m^2-2m+1-8m+28\)
\(=m^2-10m+27>0\)
Do đó pt luôn có 2 nghiệm phân biệt
Từ hệ ra đc
\(x^2+z=z^2+x=1-y^2\)
\(\Leftrightarrow\left(x-z\right)\left(x+z-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=z\\x=1-z\end{matrix}\right.\)
Giải pt theo từng TH nha bạn