\(\hept{\begin{cases}x^2-5x-\sqrt{x-2}-\sqrt{4-x}=1\\2x^2-15xy+4y^2-12x+45y...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2018

Gợi ý này bây bê 

Lấy pt (1) nhân với 2 rồi nhân chia cộng trừ các kiểu với pt (2)

Từ đó rồi blblblblbll sẽ tìm đc mqh x vs y

Tự túc

30 tháng 12 2019

PT trình thứ 2 thiếu vp

30 tháng 12 2019

pt 2 vp=0

7 tháng 2 2018

\(pt\left(1\right)\Leftrightarrow\left(x-y+2\right)\left(x^2+xy+y^2-2x-4y-8\right)=0\)

13 tháng 5 2017

Cuối cùng cũng giải được câu này.

Ta có:

\(\hept{\begin{cases}x+2y=8y^2+\sqrt{1+x^2}\left(1\right)\\\sqrt{x^2-2x+4y+11}=1+\sqrt{x-4y+2}\left(2\right)\end{cases}}\)

Từ PT (1) ta có điều kiện là:

\(\hept{\begin{cases}1-x^2\ge0\\x+2y-8y^2\ge0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-1\le x\le1\\8y^2-2y\le x\le1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-1\le x\le1\\-\frac{1}{4}\le y\le\frac{1}{2}\end{cases}}\)

Từ đây ta có: 

\(\hept{\begin{cases}1+\sqrt{x-4y+2}\le1+\sqrt{1+1+2}=3\\\sqrt{x^2-2x+4y+11}=\sqrt{\left(x-1\right)^2+4y+10}\ge\sqrt{0-1+10}=3\end{cases}}\)

Từ đây ta có ở PT thứ 2 thì \(\hept{\begin{cases}VT\ge3\\VP\le3\end{cases}}\)

Dấu = xảy ra khi \(\hept{\begin{cases}x=1\\y=-\frac{1}{4}\end{cases}}\)

Kiểm tra lại ta thấy nghiệm này thỏa mãn hệ

Vậy hệ có nghiệm duy nhất là: \(\hept{\begin{cases}x=1\\y=-\frac{1}{4}\end{cases}}\)

11 tháng 3 2019

saos mas khos thes?

cho mk hỏi ai chs lazi điểm danh cái đê ~ mk hỏi thật đấy k đùa nha ~ bình luận thì mk k cho 3 cái ~

Dùng cái đầu đi ạ